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The Grattan Institute report All complications should count sets out to

measure the extent of safety problems in Australian hospitals and to

develop appropriate policy responses.

Our approach was predicated on the assumption that complications of

care can be measured using the routine data reported on every patient

discharged from hospital. There is a voluminous literature supporting

this approach and we have reviewed different sources of measurement

in our previous report Strengthening safety statistics.

We were particularly interested in identifying persistent variations in

the prevalence of complications of care. Variation in complication rates

among hospitals indicates that some hospitals are able to achieve

better outcomes than others and therefore suggests that these rates

are reducible. In order to make such comparisons across hospitals,

careful adjustment for differences in the patients treated by each

hospital was required.

In this document, we present the data and methodology underpinning

this analysis. We start by presenting our data sources and summary

statistics. We then outline the conceptual framework unpinning our

analysis, and present our findings regarding which patients are most

at risk of experiencing complications of care.
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1 Data

Our analysis is completed on three years of data from the National

Hospital Morbidity Dataset (NHMD) provided to Grattan Institute by

the states and territories through the Australian Institute of Health

and Welfare (AIHW). The years provided were 2012-13, 2013-14 and

2014-15.

This dataset contains anonymised information about the demographics

and hospitalisations of all patients who attended a public or private

hospital in Australia over this period. Separations for which care-type

was reported as Newborn (without qualified days), and records for

Hospital boarders and Posthumous organ procurement were excluded.

We were not provided with hospitals’ names, or permitted to release

analysis which would identify specific hospitals.

In this chapter, we summarise how we cleaned this dataset, created

variables relating to the incidence of complications, and derived all

other imputed variables.

1.1 Data cleaning and sample selection

The raw data Grattan Institute received from AIHW contained 29 million

observations, which each included data on an initial admission and

up to one linked readmission.1 After separating the linked admissions

into separate observations, removing observations where there was

insufficient information for a Diagnosis Related Group (DRG) to be

assigned and removing duplicates, flawed records and outliers, 25

million observations remained.2

1. Readmissions were linked to initial admissions where they related to patients

readmitted to the same public hospital within 90 days, excluding same-day

readmissions for dialysis and chemotherapy.

2. We defined outliers as hospitals which were more than three standard deviations

from the mean in their rate of allocating Condition Onset Flag (COF) 1, the

variable that indicates whether a diagnosis was acquired in hospital.

Table 1.1: Key subsamples of the 2012-15 NHMD

Original sample 29,216,399

Expanded original sample 58,432,798

Observations to be excluded from all analysis

Empty readmission fields 26,115,179

Duplicates in all variables 4,795,317

Flawed records: MDC=8 or 9, or no principal diagnosis 44,944

Outlier rates of COF 1 643,979

Non-acute admissions 1,657,421

Sample used in general analysis 25,175,958

Notes: Although some observations could be excluded on the basis of more than one

criterion, the sample sizes listed here are derived by applying the criteria sequentially.

The observations missing DRGs were empty readmission fields that were initially

appended to diagnoses with a readmission within 90 days to the same public hospital.

Figure 1.1 on the following page provides a visual summary of how

the original sample was expanded to allocate each set of readmission

information its own observation, and then reduced. Almost all the

observations discarded for lacking a DRG were observations created

in the process of separating the linked readmission fields into their own

observations, as this produced empty observations for the 90 per cent

of initial observations which did not have linked readmissions.

A further 150,000 observations were excluded from the data when

completing regression analysis because some observations were

missing data on independent variables of interest.

Full details regarding the number of observations affected by our data

cleaning decisions are provided in Table 1.1. We also conducted some
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of our analysis on subsets of the data. Definitions and sample sizes of

these subsamples are given in Table 1.2.

1.2 Identifying and defining complications

A significant component of the analysis contained in All complications

should count is concerned with the rate of complications in Australian

hospitals, and the circumstances surrounding them. In this section, we

review the various definitions of complications used in All complications

should count, and how their incidence is derived using the NHMD.

1.2.1 The Classification of Hospital Acquired Diagnoses

The Classification of Hospital Acquired Diagnoses (CHADx) aims to be

a comprehensive classification of all complications that can be incurred

by patients during their hospitalisation. Developed and maintained in

Australia, this classification is continually being extended and refined.

The CHADx+ algorithm has two functions.3 Firstly, it defines a set of

events that constitute hospital-acquired complications. The CHADx+

algorithm “cleans” the raw incidence of hospital-acquired diagnoses by:

∙ unflagging diagnoses as being hospital acquired if it is implausible

that this is the case;

∙ counting diagnoses as being hospital acquired if it is implausible

that they were present on admission; and

∙ drawing on combinations of diagnoses, external cause codes,

external place codes and external activity codes to identify a single

complication.

Secondly, the CHADx+ algorithm classifies complications into minor

and major CHADx+ classes. This is useful for investigating the

3. Michel et al. (2009).

Figure 1.1: Most dropped observations related to empty readmission

fields

Original data format

Expanded data format

Expanded data format, after removing empty observations

Initial admissions Linked readmissions

Initial admissions

Linked readmissions

Non-empty initial admissions

Non-empty linked readmissions

Source: Grattan analysis.
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composition of aggregate complication rates, and makes clear where

multiple complications may be double-counted, or sequelae of earlier

complications.

Grattan Institute is grateful to the Victorian Department of Health and

Human Services for providing us with access to the most recent edition

of the Classification of Hospital Acquired Diagnoses, CHADx+ version

1.4 (CHADx+). This version of the classification differs from previous

editions of the classification in a number of ways:

∙ Most significantly, all “Plus” versions of the classification have been

extended to include procedures that indicate that a complication

must have occurred, like blood transfusions, as well as diagnoses

that constitute complications.

∙ There have also been a number of changes to how complications

are categorised. Most significantly, infections previously cate-

gorised under the affected body system are now grouped together

in Major CHADx Class 4: Specific Infections.

∙ Some changes have also been made to complications’ definitions.

Most significantly, a COF of 1 (acquired in hospital) is no longer

required to identify complications in Major CHADx Class 12:

Labour, delivery and postpartum complications. In other instances,

definitions of complications have expanded, for example CHADx

15.02: ‘Electrolyte disorders / fluid management’ has been

expanded from a definition that excluded dehydration.

Table 1.3 on the next page compares the rate of complications reported

in AIHW’s 2014-15 Admitted Patient Care report with the numbers

observed across the 2014-15 admissions in our data.4 These figures

are broadly aligned. However, the overall rate of complications we

4. AIHW (2016).

Table 1.2: Details of subsamples used for analysis

Collectively exhaustive subsamples:

Obstetric admissions 1,608,104

Admissions with Major Diagnostic Category (MDC) of “O”

Non-obstetric sameday admissions 16,388,968

Sameday admissions MDC not equal to “O”

Non-obstetric multiday admissions 7,028,984

Multiday admissions MDC not equal to “O”

Case studies:

Medical multiday cardiology admissions 561,101

Multiday admissions with adjacent DRGs of F60-F76. These

include admissions for circulatory disorders, unstable angina,

syncope and collapse, chest pain, arrhythmia and other

circulatory disorders.

Multiday knee replacements 139,697

Multiday admissions with adjacent DRGs of I04 and I32.

Multiday bariatric surgery 36,641

Multiday admissions with procedure codes relating to

bariatric surgery. These include gastric reduction, gastric

banding, gastroplasty, gastrectomy, gastric bypasses,

biliopancreatic diversion, duodenal-jujunal bypass, illeal

interposition, other procedures for obesity and their revisions.

†Specific bariatric procedure codes are: 3051100-6, 3051108-10, 3051200-3,

3051401, 3144100-1, 9094000, 9094100, 9094300, 9094301, 9094302,

9095000-1, 9094200-2.

Note: These subsample sizes exclude observations that were missing data on

independent variables to be used in regression analysis.
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observe is higher than that reported by AIHW, and differs notably in a

few cases.

There are three reasons for these discrepancies. Firstly, AIHW appears

to have used CHADx v.5, whereas we have used CHADx+ v.1.4, so

our comparison is affected by the differences listed above. Another key

difference between these classifications is that our overall complication

rate (CHADx+) includes complications detected through procedures

(CHAPx) in addition to the complications detected from diagnoses

(CHADx) included in CHADx v.5.

Secondly, our data is a subset of AIHW’s: we have applied more

restrictive cleaning requirements. The exclusion of newborn admissions

implied by our focus on acute admissions substantially reduces the

observed rate of Major CHADx Class 13: Perinatal complications.5

Our exclusion of observations without sufficient information to assign

a DRG and other flawed records is expected to contribute to our higher

overall rate of complications.

Finally, we note that we do not observe COFs for external cause, place

or activity codes, or which particular diagnoses they relate to, in our

dataset. Moreover, none of the International Classification of Disease –

Version 8 codes which can serve as external cause, place or activity

codes appear in our diagnosis fields, even though these codes can

also serve as diagnoses. This precludes us from detecting adverse

drug events (CHADx 2.01-2.13), and all falls (CHADx 3.01-3.04). As a

consequence, our estimates of the average prevalence of complications

are expected to be downwardly biased by about 0.1 percentage points

in absolute terms.6

5. The figures published in AIHW’s Admitted Patient Care statistics relate to all

episodes, and only exclude admissions where the COF is missing. The exclusions

listed in Table 1.1, notably the focus on acute admissions, result in a sample that is

around 500,000 observations smaller.

6. This has been estimated by comparing our current numbers to those that come

from applying the CHADx+ v.1.4 algorithm to the 2014-15 National Hospital Cost

Table 1.3: Incidence of CHADx+, 2014-15

Share of admissions involving at least one complication

Estimates

Grattan AIHW

MCHADx1 Procedural complications 1.28% 1.13%

MCHADx2 Adverse drug events 0.50% 0.70%

MCHADx3 Accidental injuries 0.31% 0.29%

MCHADx4 Hospital-acquired infections 1.19% 0.26%

MCHADx5 Cardiovascular complications 1.94% 1.38%

MCHADx6 Respiratory complications 0.73% 0.63%

MCHADx7 Gastrointestinal complications 1.34% 1.15%

MCHADx8 Skin conditions 0.64% 0.51%

MCHADx9 Genitourinary complications 0.85% 0.79%

MCHADx10 Hospital-acquired psychiatric states 0.65% 0.46%

MCHADx11 Early pregnancy complications 0.01% 0.01%

MCHADx12 Labour and delivery complications 2.71% 1.52%

MCHADx13 Perinatal complications 0.10% 0.76%

MCHADx14 Haematological disorders 0.53% 0.34%

MCHADx15 Metabolic disorders 1.37% 1.00%

MCHADx16 Nervous system complications 0.17% 0.12%

MCHADx17 Other complications 1.64% 1.30%

Any CHADx 9.36% 8.3%

Any CHAPx 3.80% N/A

Any CHADx+ 10.80% 8.3%

Notes: The names of the MCHADx1, MCHADx4, MCHADx12 have been revised

between the CHADx v.5 seemingly used by AIHW and CHADx+ v1.4 used by

Grattan. In the version used by AIHW, these categories were titled Post-procedural

complications, Specific infections and Labour, delivery and postpartum complications.

Source: AIHW (2016) and Grattan analysis of the 2012-15 National Hospital Morbidity

Dataset.
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1.2.2 The “Priority Complications”, known as Hospital Acquired

Complications

Over 2012-2016, the Australian Commission on Safety and Quality in

Health Care (ACSQHC) and the Independent Hospital Pricing Authority

(IHPA) developed a list of 16 national priority complications, known

as Hospital Acquired Complications (HACs).7 Our analysis identifies

which, if any, HACs occurred during each admission using the HACs

specification version 1.1, as published by ACSQHC.8

Unfortunately, indicators of unplanned theatre or intensive care

admissions are not currently collected in the NHMD.9 Consequently,

we could not identify HAC 4, or HAC 5. As discussed earlier, our data

also doesn’t allow us to identify falls. This prevents us from detecting

instances of HAC 2. Our exclusion of newborn admissions from our

sample also means that HAC 16 is not applicable. We estimate that

these shortcomings have caused us to underestimate the prevalence of

HACs by 14 per cent, or 0.28 per cent in absolute terms.10

Table 1.4 demonstrates that, for public hospital patients in 2014-15,

our estimated rates of HACs line up closely with the rates estimated by

IHPA. This comparison is aided by a common set of definitions: both

IHPA and Grattan have specified the HACs according to version 1.1.

It is unsurprising that IHPA finds a slightly higher prevalence, as they

have applied more restrictive data cleaning criteria.

Dataset provided to Grattan Institute by the Independent Hospital Pricing Authority,

where it is possible to identify the incidence of CHADx 2.01-2.13 and CHADx 3.01-

3.04.

7. ACSQHC (2017).

8. ACSQHC (2016).

9. Ibid.

10. We assume we would have observed the same rate of HAC 5 as IHPA, and would

have also observed HAC 6 at the average prevalence of an additional HAC.

By this method, IHPA’s inability to estimate HAC 6 means they probably also

underestimate the prevalence of HACs, but by about 7 per cent.

Table 1.4: Incidence of HACs in public hospitals, 2014-15

Share of admissions involving at least one complication

Estimate

Grattan IHPA

HAC1 Pressure Injury 0.06% 0.06%

HAC2 Falls resulting in fracture or other

intracranial injury

N/A 0.03%

HAC3 Healthcare associated infection 1.03% 1.12%

HAC4 Surgical complications requiring

unplanned return to theatre

N/A 0.21%

HAC5 Unplanned intensive care unit

admission

N/A N/A

HAC6 Respiratory complications 0.12% 0.19%

HAC7 Venous thromboembolism 0.06% 0.06%

HAC8 Renal failure 0.02% 0.01%

HAC9 Gastrointestinal bleeding 0.12% 0.12%

HAC10 Medication complications 0.24% 0.26%

HAC11 Delirium 0.42% 0.43%

HAC12 Persistent incontinence 0.06% 0.07%

HAC13 Malnutrition 0.10% 0.10%

HAC14 Cardiac complications 0.65% 0.64%

HAC15 Third and fourth degree perineal

laceration during delivery

0.11% 0.15%

HAC16 Neonatal birth trauma 0.00% 0.01%

Any HAC 2.37% 2.68%

Sample size 5,443,561 3,779,338

Source: IHPA (2017) and Grattan analysis of the 2012-15 National Hospital Morbidity

Dataset.

Grattan Institute 2018 9



All complications should count: Using our data to make hospitals safer (Methodological supplement)

1.2.3 Reconciling definitions of complications

When describing the various types of harm that occur to patients in

hospitals, All complications should count refers to CHADx+, HACs and

sentinel events separately, and to any of these events as “complica-

tions”. CHADx+ is intended to be a comprehensive classification of

complications, which should mean that HACs and sentinel events refer

to subsets of CHADx+. Unfortunately, it is not quite this neat in practice.

CHADx+ and HACs are defined using routine data, so can both

be identified within the NHMD and reconciled against each other.

Table 1.5 shows that 0.04 per cent of admissions, or 2.4 per cent of

admissions with at least one HAC, are found to have a HAC event but

not a CHADx+ event. The main cause of this discrepancy is a more

expansive definition of hypoglycaemia in the HACs classification.11

In theory, sentinel events should also be a subset of the comprehensive

CHADx+. However, sentinel events are manually recorded, so include

some complications – like infants being discharged to the wrong

family – that cannot be identified retrospectively from routine data.

Consequently, it is unclear how many sentinel events are additional to

the complications identified in the NHMD by the CHADx+ algorithm.

These messy definitions make it challenging to arrive at a clean figure

of the total number “complications”. In All complications should count,

the total number of complications is defined as the total number of

CHADx+ events and any HACs events which are not also flagged as

CHADx+ events (see Table 1.5). This figure excludes sentinel events

that are not flagged as CHADx+ events because, although they should

be included, it’s unclear how to do so and there are too few of them

(approximately 100 per year) for their omission to be of consequence.

11. Diagnoses E1064, E1164, E1364 and E1464 constitute hypoglycaemia in HAC

10.3, when accompanied by a COF 1, but they do not contribute to the prevalence

of the analogous CHADx 15.04.

Table 1.5: Derivation of the total number of complications

Admissions involving at least one complication

Number per year Share

CHADx+ 891,957 10.63%

HACs, not otherwise counted 3,407 0.04%

Total number of complications 895,364 10.67%

Note: Figures are calculated over 2012-15.

Source: Grattan analysis of the 2012-15 National Hospital Morbidity Dataset.

We avoid these technicalities in the report’s main text, and simply refer

to HACs as a subset of the comprehensive CHADx+ classification of

complications.

1.2.4 Comparing CHADx+ and HACs

In Figure 2.1 of All complications should count, we illustrate that there

are significant and idiosyncratic differences between the complications

included in CHADx+, and those included in HACs. Table 1.6 sets

out which minor CHADx+ classes and HACs were compared in this

graphic.

1.3 Other imputed variables

To facilitate the analysis of the CHADx+ and HACs variables, we

generated a number of other patient and hospital characteristics

from the variables contained within the NHMD. This section provides

definitions and analytical notes on these variables.

1.3.1 Variables derived from Diagnosis Related Groups

Key information about patients’ diagnoses and procedures is routinely

summarised into Diagnosis Related Groups (DRGs). The DRGs

included in the NHMD provided to Grattan Institute by AIHW were
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assigned according to the version 6 of the Australian Refined DRG

classification.

Each component of a DRG codifies a different piece of information

about a patient’s principal diagnosis or procedure:

∙ The first letter indicates the body system primarily affected, and is

referred to as the Major Diagnostic Category (MDC).

∙ Together with the two numbers which follow, the MDC identifies a

patient’s principal diagnosis or procedure and is referred to as their

Adjacent DRG.

∙ The two numbers of a DRG also indicate the DRG’s type: 01-39

are used in surgical DRGs; 40-59 are used in medical procedures;

and 60-99 are used in medical DRGs.

∙ The DRG’s suffix indicates resource consumption, with complexity

decreasing from A to D. The suffix Z is used if there is no split in

an Adjacent DRG.

We derive each of these variables from the DRGs contained within our

dataset. Figure 1.2 provides a visual summary of the components of a

DRG each variable draws upon.

1.3.2 Index of socioeconomic advantage and disadvantage

From the data collected through each Australian census, the Australian

Bureau of Statistics releases sets of socio-economic indices for

areas (SEIFA). We used the 2013 edition of the Index of Relative

Socio-economic Advantage and Disadvantage from the SEIFA to

estimate the socio-economic status of each patient, on the basis of the

Statistical Local Area 2 they resided in when they were hospitalised.12

12. ABS (2013).

Table 1.6: Definitions employed in Figure 2.1 of All complications should

count

CHADx+ HACs

Acute renal failure 9.01 8

Accidental puncture or laceration during a procedure 1.05 N/A

Device or implant-related infection 4.11 3.5, 3.7

Pressure injury, stage 1 or 2 8.01 N/A

Pressure injury, stage 3 or 4 8.02 1.1, 1.2

Constipation 7.03 N/A

Delirium 10.03 11

Hospital-acquired urinary tract infection 4.16 3.1

Notes: We define these minor complication classes relative to v.1.4 and v.1.1 of the

CHADx+ and HAC classifications, respectively.

Figure 1.2: Several variables can be derived from a DRG

A 09 B
Adjacent DRG

Major Diagnostic Category

DRG type
Resource consumption suffix

Source: Grattan analysis.
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The 2011 census data used to construct this index is relevant to our

data on 2012-2015 hospital admissions.

For simplicity, we refer to this index as SEIFA from here on.

1.3.3 Patient age

The information about patient age contained in our dataset is grouped

into five year categories, with the exception of the open-ended category

of 75 or older. For regression analysis, we relabel these categorical

variables with their central value: age category 0 to 4 is recoded as 2,

and so forth.13 Summary statistics for age presented in Chapter 2 relate

to this transformed variable.

We also complete some analysis of knee replacement patients by age

category. Table 1.7 defines the categories used, and the number of

knee replacement patients in each category.

1.3.4 Comorbidities

We identify patients’ comorbidities from the diagnoses assigned to

them in the NHMD using the Multipurpose Australian Comorbidity

Scoring System (MACSS).14 Analogous to the better-known Charlson

and Elixhauser comorbidity indices, the MACSS index groups specific

diagnoses into particular comorbidities like hypertension, and cate-

gorises these comorbidities into body system categories.

We chose to use this Australian-derived comorbidity index because

studies have found that it outperforms the Charlson and Elixhauser

indices in predicting mortality, readmissions and length of stay for

Australian hospital records.15

13. When treated as a count variable, age category “75 and older” was coded as 80.

14. Toson et al. (2016).

15. Toson et al. (2016); and Holman et al. (2005).

Table 1.7: Age categories used for knee replacement analysis

Age range Number of knee replacements, 2012-15

0 – 49 3,132

50 – 64 43,043

65 – 74 55,177

75+ 38,402

The MACSS body system categories used in our analysis have been

modestly refined from those suggested by the index’s researchers, in

order to better capture characteristics of the data that we saw to be

relevant to our analysis of complications. The original body system

categories can be found in Toson et al. (2016), our modifications to

these categories are described in Table 1.8 and our refined body

system categories are listed in Table 1.9 on page 14.

1.3.5 Hospital size and scope

We define hospital size as the number of admissions per hospital over

the three years for which we have data. We also calculate the number

of each hospital’s operations over the three years in relation to each of

our three case studies: bariatric surgery; medical cardiology; and knee

replacements.

To measure the scope of hospitals’ services we use an Information

Theory Index. These have long been used to capture how similar

the concentration of a hospital’s activity is to the concentration of the

system overall.16 Our index is constructed using patients’ MDCs, so

reflects the degree to which hospitals have specialised in particular

MDCs:

scopeh =
N
∑︁

k=1

pk,h ln

(︂

pk,h
ϕk

)︂

16. Kobel and Theurl (2013).
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Where:

pk,h = the proportion of hospital h’s patients that are assigned MDC k

ϕk = the proportion of all patients that are assigned MDC k

This index increases with the concentration of a hospital’s services.

1.3.6 Coding quality

As discussed in our earlier report, Strengthening safety statistics, the

quality of hospital coding is known to vary by institution. This variation

complicates analysis of hospital safety in two ways.

Firstly, variation in the quality of hospital coding makes it difficult to

distinguish a low rate of complications from a low rate of recording

whether a condition has been acquired in hospital. Through this

channel, shortcomings in coding could cause the safety of some

hospitals to be overestimated.

Poor coding quality can also result in fewer comorbidities being

recorded or complex DRGs being assigned less frequently. Where

this is the case, the risk profiles of patients in some hospitals may be

systematically underestimated, causing the hospital’s risk-adjusted rate

of complications to be overestimated.

To capture these aspects of coding quality, we use two metrics:

Prevalence of hospital-acquired conditions among diagnoses:

COF 1 Prevalences,t =
∑︁

i∈Is,t

Number of COF 1’si

Number of diagnosesi

Where:

Table 1.8: Refinements made to MACSS’ Body System Categories (BSCs)

Description Changes required

Diabetes categorised separately

from other Endocrine, Metabolic

and Immune Diseases.

Indices 16, 17 and 22 removed from

BSC 3, and categorised separately.

Drug and alcohol use categorised

separately from other Mental

Disorders.

Indices 28 and 29 removed from

BSC 5, and categorised separately.

Incontinence reclassified as

Diseases of the Genitourinary

System, rather than Mental

Disorders.

Index 36 removed from BSC 5 and

reclassified as BSC 14.

Eye diseases categorised sepa-

rately from Diseases of the Nervous

System or Sense Organs.

Indices 44, 45 and 46 removed from

BSC 6 and categorised separately.

Chronic renal disease classified

separately from Diseases of the

Genitourinary System.

Index 74 removed from BSC 10.

Body system category labels

Congenital Abnormalities, Injuries

and Poisonings, Factors Influencing

Health Status and Contact with

Health Services, and Symptoms,

Signs and Ill-Defined Conditions

combined into an “Other” category.

BSCs 14, 15, 16 and 17 combined.
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COF 1 denotes condition onset flag equal to 1, and indicates that a

condition has been acquired in hospital

Is,t is the set of all of admissions for state s in month t

Coding depth, which summarises the severity of DRG codes used by

a state in a given time period:

DRG severity z-scorei,s,t =
DRG suffixi,s,t − E

[︀

DRG suffix | ADRG
]︀

√︁

Var
[︀

DRG suffix | ADRG
]︀

Coding depths,t =
1

Ns,t

∑︁

i∈Is,t

DRG severity z-scorei

Where:

∙ DRG suffix refers to the DRG’s resource consumption suffix. For

this purpose, the suffixes A, B, C, and D are converted to 1, 2, 3,

and 4, respectively.17 This direct mapping means that low DRG

severity z-scores indicate high severity, as the suffix A is the most

severe.18

∙ The expectation and variance of DRG suffixes are calculated

across all admissions that share the same adjacent DRG.

∙ DRG severity z-scores are calculated for each admission, i.

17. If a DRG has the suffix Z, it is not allocated a DRG severity z-score. This is

because the Z suffix indicates there is only one potential severity level for that

adjacent DRG. Consequently, that DRG cannot be used to infer the average

complexity of DRGs at a particular hospital.

18. It’s possible that the DRG severity z-score will also capture some differences

in states’ case-mix. However, we expect these differences to be minimal and,

regardless, standardise hospital performance estimates across states.

Table 1.9: MACSS Refined Body System Categories

1 Infectious diseases

2 Neoplasms

3 Endocrine, metabolic or immune diseases

4 Diabetes

5 Blood diseases

6 Mental disorders

7 Drug or alcohol use

8 Diseases of the nervous system or sense organs

9 Eye disease

10 Diseases of the circulatory system

11 Diseases of the respiratory system

12 Diseases of the digestive system

13 Chronic renal disease

14 Diseases of the genitourinary system

15 Pregnancy, childbirth and puerperium

16 Chronic skin ulcer

17 Diseases of the musculoskeletal system and connective tissue

18 Other
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∙ Coding depth summarises the DRG severity z-scores across

admissions within a given state, s, and month, t.

We use these metrics to monitor and control for differences in coding

quality across states and time.
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2 Conceptual framework

The Grattan Institute report All complications should count finds that

one in nine patients in Australian hospitals are harmed during the

course of their stay. This rate is as high as one in four for patients who

stay in hospital overnight. This does not need to be the case: as we

show in the report, some hospitals are succeeding at delivering far

safer care. In this chapter, we outline our methodology for identifying

how much scope there is for hospitals to reduce their complication rate,

given the risk profile of their patients.

2.1 Conceptual framework

The central premise of our approach is that a patient’s hospital out-

comes are jointly determined by the patient’s condition upon admission,

the quality of the care that they receive while admitted and random

chance:

G(Pr (adverse outcome)) = patient’s condition + hospital characteristics +

quality of hospital’s care + random chance

When patient outcomes are understood in this way, it follows that

the systematic differences in patients’ outcomes across hospitals

that persist after differences in patients’ risk profiles have been

accounted for reflect differences in hospitals’ quality of care.19 Hospital

characteristics are also included when they are perceived to reflect

otherwise unobserved aspects of patients’ conditions. The objective

of our research is to estimate the magnitude of these differences.

19. The unspecified function G(.) simply indicates that we expect this additive

relationship be to non-linear. We specify and justify our choice of G(.) in

Section 2.5.1.

This methodology can be applied to any adverse patient outcome, and

is known in the health economics literature as outcomes research.20

Our approach is modelled on the recommendations made in Ash et al.

(2012), and is complemented by subsequent research that builds on

issues raised in that White Paper.

In the following sections, we outline our: choice of dependent variable;

approach to risk adjustment; precautions regarding small hospitals,

varying coding quality and regression to the mean. We conclude by

formally stating our full model specification.

2.2 Choice of dependent variable

The most common outcomes studied to infer the safety of hospital care

are 30-day mortality or readmission.21 However, coding innovations

in Australia over the last 10 years allow us to apply the outcomes

research methodology to the prevalence of any hospital-acquired

complication.

Complications are a superior choice of adverse patient outcome for our

purpose, because they can occur to patients who have strong recovery

prospects as well as patients who have ongoing health problems or

are close to death. The frequency with which complications occur also

improves the statistical power of our analysis.22 Complications of care

– as measured using the HAC classification – is also the contemporary

focus of policy about adjusting Commonwealth-state payments. For

these reasons, we use hospitals’ complication rates to investigate the

safety of hospitals’ care.

20. Alemayehu et al. (2017).

21. Ash et al. (2012).

22. Krumholz et al. (2006).
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The majority of our analysis is completed on the incidence of any

complication, as defined by the CHADx+ classification. However,

we also fit one model on the incidence of HACs, for the purpose

of assessing how these classifications differ in their usefulness for

distinguish the safety of hospital care.

We observe every instance of each type of complication in our data.

However, we choose to focus our analysis on whether patients

experience at least one complication. Collapsing our count data on

complications into a binary variable reduces the amount of variation

in outcomes we observe, which may limit the scope for improvement

in outcomes that we can identify. We have decided to take this con-

servative approach because we cannot determine whether secondary

complications have been caused by earlier complications or further

shortcomings in care.

2.3 Risk adjustment

The key challenge involved in outcomes research is adequately

controlling for each patient’s risk of experiencing a complication during

their hospitalisation. This is important because, in its absence, a high

incidence of complications that is associated with above-average

patient complexity could erroneously be attributed to the quality of a

hospital’s care.

In this section, we discuss the appropriate treatment of alternative

outcome measures in risk adjustment, the observable patient and

hospital characteristics that we adjust for in our models, and the

implications of unobservable patient risk factors on the validity of our

estimates.

2.3.1 Alternative outcome measures

Our methodology involves estimating hospital performance from the

difference between a hospital’s observed rate of complications and

the rate which is to be expected, given the variables used for risk

adjustment.

To ensure that this expected rate is not set too high, all risk factors

that are determined before a patient is admitted to hospital should be

included in the risk adjustment model. To ensure that the expected

rate is not set too low, intermediate and alternative outcome measures

should be deliberately excluded.23

The distinction between hospitals’ circumstances and outcomes is, in

most of these cases, clear cut: patients’ demographic characteristics

are beyond hospitals’ control, but patient outcomes – like length of stay

and mortality and readmission rates – are influenced by the safety

of hospitals’ care. None of these variables are included in our risk

adjustment model.24

However, when it comes to patient characteristics that relate to health

disadvantage, the distinction between circumstances and outcomes of

care is less clean cut. Existing disadvantage does mean that patients in

these demographics are more likely to experience adverse outcomes,

which makes it less likely that hospitals treating these patients will

achieve best-in-class results.25 However, unlike equalising outcomes for

23. Intermediate outcomes are defined as those that may contribute to the outcome

of interest but are determined in hospital, like length of stay and whether a patient

was admitted to an Intensive Care Unit. If alternative outcomes were included in

the risk adjustment model, hospitals’ differences in this metric would be excused.

That is, hospital performance as measured by the over-risk-adjusted complication

rate would only capture differences in performance that are not correlated with

differences in the alternative outcome rate (Ash et al. (2012, p. 19)).

24. The number of procedures a patient has could also be considered an intermediate

outcome, if their complications necessitate further procedures. This is not always

the case for most complications, but most procedures increase patients’ risk

of a complication. For this reason, we consider it to be more important, on

balance, to include patients’ number of procedures in our risk adjustment models.

This decision may cause our estimates of hospital performance to be overly

conservative.

25. Iezzoni (2012); and Krumholz et al. (2006).
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patients who differ in terms of age, comorbidities and other clinical risk

factors, achieving equitable outcomes for disadvantaged Australians

should not be beyond the ambition of our health system.

One way of clarifying the appropriate treatment of health disadvantage

in outcomes research models of this type is to define the time horizon

of reference. In the short term, a high burden of health disadvantage

is a reality that should be expected to result in worse outcomes at a

hospital level, so this risk should be adjusted for. Over the medium

term, the outcomes of these patients’ hospitalisations should be

improved, rather than excused.

For the most part, our analysis takes a short-term perspective and

controls for patients’ socio-economic status as a circumstance of care.

As we do not have data on indigeneity or other patient-characteristics

like cultural and linguistic diversity that are correlated with health disad-

vantage, we do not control for these factors. Accordingly, our estimates

of hospital performance should be interpreted as taking a longer-term

view in these regards, as they do not excuse sub-par outcomes that

may be attributable to these forms of health disadvantage.

2.3.2 Observable patient-level risk factors

The biggest determinant of a patient’s probability of acquiring a

complication is how sick they are on admission. Observable aspects

of this risk are often conceptually grouped by:26

∙ patient demographics, like age and sex;

∙ clinical factors, like diagnoses and comorbidities;

∙ health behaviours, like exercise habits and diet; and

∙ attitudes and perceptions, like religion and care preferences.

26. Iezzoni (2012).

The routine data we rely on for our analysis is a good source of

information on patient demographics and clinical factors. We can

identify patients’ primary diagnosis, their comorbidities and basic

demographic information, such as patients’ age, gender and whether

they have diabetes. Unfortunately, we do not observe health behaviours

or patients attitudes and preferences.

We are also able to capture some aspects of patients’ clinical risk and

perhaps health behaviours indirectly, through patients’ socio-economic

status. The social determinants of health mean that public hospitals

and hospitals located in low socioeconomic areas are likely to be

treating patients with poorer overall health than those hospitals in areas

with high socioeconomic status or private hospitals.27 We control for

this by including socioeconomic status in our risk adjustment model.

Table 2.1 on the following page provides summary statistics on all of

our patient-level risk factors.

Treatment of principal diagnosis in risk adjustment

A patient’s diagnosis is likely to affect the impact of every patient-level

risk factor on their overall risk of a complication. Accordingly, we think

it would be appropriate to allow the risk loading associated with each

observable characteristic to depend on a patient’s DRG. However, this

would result in an unworkably large model specification.

We pursue the same overall model specification by fitting the risk

adjustment model using a two-stage estimation approach:

1. First, we estimate each patient’s risk of a complication using

models that are estimated across only groups of patients who

share the same DRG or similar DRGs. Only patient-level risk

27. Marmot (2015).
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factors are included in this model:

G(Pr (adverse outcome)) = patient’s condition + random chance

2. From these models, we obtain estimates of each patient’s risk of

experiencing a complication. We collate these estimates from the

various models into a single patient risk variable, p̂.

G(Pr (adverse outcome)) = p̂+ hospital characteristics +

quality of hospital’s care +

random chance

3. Second, we estimate the overall model outlined in Section 2.1

using our first-stage risk estimates, p̂, as the “patient condition”

component of the risk adjustment model. This single model

is fitted across the full sample of patients being considered,

regardless of their DRG.

This two-step estimation approach was applied to each of the six

samples we were interested in modelling. On some of these samples,

it was feasible to achieve our goal of completing the patient-level risk

adjustment separately for each DRG. For example, there are only

five types of DRGs that relate to knee replacements, so DRG-specific

risk-adjustment could be achieved using just five first-stage models.

For others, the huge variety of DRGs within the sample required us to

compromise. For example, there are 658 DRGs among the sample of

patients with non-obstetric multiday admissions. We ran 21 first-stage

models on this sample, which allowed us to reduce the number of

DRGs in each first-stage model to 31 on average. We ensured that the

DRGs which were grouped together into the same first-stage model

were as alike as possible.

Table 2.1: Summary statistics, patient-level risk variables

Mean Std. dev.

Age (central year of 5 year category) 52.09 22.82

Sex (0 = male, 1 = female) 0.54 0.50

SEIFA 997.79 77.85

Number of procedures 2.08 2.03

Emergency (0 = non-emergency, 1 = emergency) 0.36 0.48

Comorbidities:

Infectious diseases 0.053 0.224

Neoplasms 0.135 0.342

Endocrine, metabolic or immune

diseases

0.080 0.272

Diabetes 0.104 0.305

Blood diseases 0.045 0.208

Mental disorders 0.054 0.225

Drug or alcohol use 0.028 0.165

Diseases of the nervous system or

sense organs

0.025 0.157

Eye disease 0.038 0.190

Diseases of the circulatory system 0.123 0.328

Diseases of the respiratory system 0.056 0.229

Diseases of the digestive system 0.131 0.337

Chronic renal disease 0.047 0.211

Diseases of the genitourinary system 0.081 0.273

Pregnancy, childbirth and puerperium 0.058 0.234

Chronic skin ulcer 0.004 0.063

Diseases of the musculoskeletal

system and connective tissue

0.051 0.219

Other comorbidities 0.146 0.353

Note: Summary statistics calculated on full pre-regression sample, excluding 88

admissions for which sex of patient was not identified as either male or female.

Source: Grattan analysis of the 2012-15 National Hospital Morbidity Dataset.
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In total, we fitted 89 first-stage models. Table 2.2 summarises the

number of first-stage models run over each of the six samples, and

the average number of DRGs within each of them. Where there was

more than one DRG in a sample’s first-stage models, we also note the

principle on which we decided to group DRGs together.

The greater granularity of risk adjustment across our three case studies

allows us to have greater confidence in the sufficiency of our risk

adjustment efforts across these subsamples, which is why all detailed

inference is conducted on these case studies. Estimates relating to

all hospital admissions have been derived from aggregating model

estimates across the three collectively exhaustive subsamples.

A potential critique of this approach is that the relative contributions

of patient characteristics to overall patient risk factors are determined

without reference to hospital characteristics. As a consequence, the

estimates of the coefficients of patient characteristics in the patient

risk models could be biased if they are correlated with the hospital

characteristics excluded from this first-stage model. This imperfection

is not of concern however because the coefficients of each of the

patient risk factors are not of interest in this analytical exercise, and this

two-stage approach will not bias the second stage estimates of hospital

performance.28

2.3.3 Observable hospital-level risk factors

We also include hospital characteristics in our risk adjustment model

where we believe they may reflect otherwise observable differences in

patients’ risk.

28. This two-stage approach will not bias the overall contribution of patient risk to the

risk adjustment model, because the coefficient of the combined patient risk term

can adjust to accommodate the inclusion of hospital-level risk factors and hospital

performance indicators in the second stage.

Table 2.2: Granularity of patient-level risk adjustment

Characteristic on

which subsamples

were defined

Number of

subsamples

Average

number of

DRGs in

each

subsample

Collectively exhaustive subsamples:

Obstetric DRG & sameday or

multiday

20 1

Non-obstetric multiday MDC & DRG type 21 31

Non-obstetric sameday MDC & DRG type 21 32

Case studies:

Multiday bariatric surgery Procedure type 7 1†

Multiday cardiology By adjacent DRG 15 2

Multiday knee-replacement By DRG 5 1

† Excluding the 2% of bariatric patients who are assigned very uncommon DRGs. If

the 72 very uncommon DRGs are included, this figure jumps to 11.
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For example, patients with particularly complex conditions are more

likely to seek out the care of large or specialised hospitals.29 This

means that a hospital’s size or degree of specialisation may indicate

the complexity of their patients. For this reason, we include the

scale and scope (i.e. breadth of services / extent of specialisation)

of hospitals’ operations in our risk adjustment model. Each hospital’s

state and variables that reflect the quality of hospitals’ coding are also

included, for reasons elaborated on in Section 2.4.1. Table 2.3 presents

summary statistics on these hospital-level risk factors.

We note that our decision to include these hospital characteristics in

our risk adjustment model is conservative. This methodology attributes

all differences in outcomes across hospitals of different scales and

scopes to differences in their patients’ complexity, and all differences

across states to differences in the way they code hospital activity. This

is equivalent to assuming there is no difference in the average safety

of care in large versus small hospitals, or across states. Consequently,

our estimates of the total scope to improve the safety of hospital care

will be conservative.

2.3.4 Unobservable risk factors

Of course, not all factors that affect patients’ likelihood of experiencing

a complication are observable in routine data. Consequently, we

are unlikely to be able to predict a particular patient’s likelihood of

experiencing a complication with great accuracy.

The impossibility of such perfect risk adjustment is sometimes raised

as a cause for concern regarding the validity of outcomes research.

However, it is important to recognise that risk adjustment is sufficient

for comparing patient outcomes across hospitals if the patient risk

factors that are have not been adjusted for are equally distributed

29. Rajaram et al. (2015).

Table 2.3: Summary statistics, hospital-level risk variables

Mean Std. dev.

Hospital volume per annum 71,646 75,492

Hospital scope 0.260 0.401

COF1 prevalence 0.030 0.011

DRG severity z-score <0.001 0.032

States and Territories:

New South Wales 0.302

Victoria 0.262

Queensland 0.218

Western Australia 0.096

South Australia 0.076

Tasmania 0.022

Australian Capital Territory 0.014

Northern Territory 0.011

Note: Summary statistics calculated on full pre-regression sample, excluding 88

admissions for which sex of patient was not identified as either male or female.

Source: Grattan analysis of the 2012-15 National Hospital Morbidity Dataset.
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across hospitals. To mitigate against this risk we focus our analysis on

subsets of admissions which are alike.

We complete the majority of our analysis through case studies

of admissions for bariatric surgery, medical cardiology and knee

replacements because these admissions are quite homogeneous:

bariatric surgery and knee replacements are essentially only elective

procedures, medical cardiology only emergency. Relative homogeneity

within these patient groups more generally also provides a measure

of protection against any unacknowledged sources of unobserved

variation in the average risk of hospitals’ patients.

2.4 Other analytical challenges

Beyond adequate risk adjustment, there are two additional challenges

involved in arriving at robust estimates of the safety of hospitals’ care.

The first challenge is accounting for the disjoint between what happens

in hospitals and what gets recorded. The second challenge is isolating

hospital performance from statistical noise, particularly in the case

of small hospitals. In this section, we discuss the strategies we’ve

employed to overcome these challenges.

2.4.1 Accounting for differences in coding quality

Each hospital is responsible for converting information collected

about patients’ hospitalisations into coded records. Coding audits

are conducted to ensure that coding practices are consistent across

hospitals. However, differences in how routine data has been used to

determine hospitals’ funding entitlements has meant that the incentives

to invest in high-quality coding has varied across states, and over time.

Each Australian state has a different history of using hospital records to

determine hospitals’ funding entitlements. Victoria introduced casemix

funding in 1993-94, and South Australia adopted a similar model in

1994-95. Western Australia and Tasmania introduced forms of casemix

funding in 1996-97, and Queensland started phasing it in from 1997-98,

leaving New South Wales to be a slow adopter.30 In 2011, it was agreed

that growth funding from the Commonwealth would transition to an

Activity-Based Funding approach, coming into effect from 2014-15.31

This varied history of incentives for detailed coding manifests as

differences in coding depth across states. Figure 2.1 on the following

page shows that more DRGs with suffixes that indicate “catastrophic”

and “severe” complications or comorbidities are more common in

Victoria, the ACT and the NT than the other states, and less severe

DRGs are less common. For the larger states, this is more likely to

reflect different incentives to code patients’ conditions thoroughly, than

differences in health across these geographies.

In addition to depending on the general thoroughness of coding

practices, our analysis relies on the accuracy of diagnoses’ condition

onset flags. Condition onset flags (COFs) identify whether diagnoses

were present on admission or hospital-acquired, and so are required to

distinguish complications from comorbidities.

The accuracy of COFs is also expected to vary by states. Victoria

pioneered the use of COFs in 1992, Queensland adopted the practice

in 2006 and all other states introduced the COF in 2008. State health

departments have also used this data for different purposes over this

time, which we expect would have affected the emphasis placed on

thorough and accurate COF coding. Given this, it is unsurprising that

we also observe substantial variation in the prevalence of COFs equal

to 1 – indicating that a complication was hospital-acquired – across

states and over time.

As we detailed in Appendix B of Strengthening safety statistics there is

also evidence that coding depth, use of the COFs and general coding

accuracy also varies across hospitals within states.

30. Duckett (1998); and Eager (2010).

31. COAG (2011).
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We employ a number of strategies to account for differences in coding

quality across states and over time, and within states.

Accounting for among-state differences in coding depth

Our first strategy for controlling for between-state differences in coding

depth is to include in our risk adjustment model the state-by-time period

coding depth and COF 1 prevalence variables displayed in Figure 2.1

and Figure 2.2. By doing so, we account for the fact that a higher rate

of complications detected will be higher in months where a hospital’s

states has been recording a greater proportion of the complications that

occur.

To capture any remaining variation in coding quality across states,

we also control for differences in the average rate of complications

observed across states. While this precaution also excuses any

systematic differences in the safety of states’ hospitals, identifying

differences in states’ performances was not the objective of our

analysis.

As a further precaution, we de-emphasise among-state differences in

our report.

Accounting for within-state differences in coding depth

In addition to controlling for among-state variation, we take two

precautions to account for within-state differences in coding depth.

Firstly, we control for differences in coding quality that are correlated

with hospital size by including hospital size in our risk adjustment

model. Of course, there are many other characteristics that vary by

hospital size – principally, resources and patient risk. We are not

concerned about capturing these characteristics in our attempts to

control for differences in coding quality because, as discussed in

Section 2.3, we also want to risk adjust for these factors.

Figure 2.1: Coding depth varies over time and by state

Average DRG severity z-score, by state and month, per cent
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Source: Grattan analysis of the 2012-15 National Hospital Morbidity Dataset.
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It’s likely that there are also legitimate differences in the safety of large

and small hospitals.32 Insofar as this is the case, excusing differences

in safety as if they were attributable to differences in patient risk or

coding practices will have made our risk-adjusted complication rates

overly conservative.

As a final protection against unobserved within-state differences in

coding depth, we identify hospitals’ scope for improvement relative

to the top decile and quartile of hospitals. Order statistics like deciles

and quartiles provide a degree of protection from poor coding quality

because they are determined entirely by the observation occupying

a particular rank in the ordered sample. This means that, unless all

hospitals that make up the best decile are extreme outliers in their

coding practices, some hospitals are achieving at the benchmark

complication rate against which hospitals’ scope for improvement is

being calculated.

2.4.2 Ensuring estimates of hospital performance are

representative of usual outcomes

Even where the incidence of complications is recorded accurately,

it can be unclear whether the rate of complications incurred over a

particular window of time is representative of a hospital’s performance

generally. This is especially of concern for small hospitals, where each

patient outcome has a larger influence on a hospital’s complication rate.

When risk-adjusted complication rates are used to estimate the scope

for safety improvement, as they are in our analysis, it is particularly

important that short-term fluctuations in complication rates are

averaged out. This is because performance benchmarks that are set

during moments of favourable conditions and good fortune may be

near impossible to sustain under regular conditions, even for the safest

hospitals. This phenomenon is known as mean reversion: extreme

32. Pieper et al. (2013).

Figure 2.2: Use of condition onset flag 1 varies over time and by state

Average prevalence of condition onset flag 1 per diagnosis, by state and

month, per cent
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outcomes tend to be followed by more moderate ones, reverting

towards the mean over time.

To ensure that our estimates are robust to mean reversion, we employ

four strategies.

Strategy 1: Measure hospital performance over a long time window

Our analysis is based on estimates of hospital performance which

are derived from hospitals’ outcomes over a three-year period. In

Section 3.4, we illustrate that short-term waves of fortune are expected

to even out over a far briefer period: perhaps one month. This accords

with our expectations, as the most obvious examples of favourable

conditions – a quiet period, a below-average period of infection risk,

a cohort of patients that happens to be more complex than their

characteristics suggest – would be expected to vary over quite short

time periods.

Strategy 2: Offset the volatility of small hospitals’ performance

estimates

Our second defence is to account for the higher volatility of small

hospitals’ outcomes in our risk-adjustment methodology. Under

Bayesian approaches, statisticians make assumptions about what

they expect the true value of parameters to be. Rather than simply

concluding that parameters are equal to the average value they’re

observed to take in the data, Bayesian analysis combines these

empirical observations with prior expectations. By incorporating

an external source of information, Bayesian analysis can arrive at

estimates that are more robust to outliers in the data.

We use an empirical Bayes estimation methodology to protect against

undue volatility in estimates of small hospitals performances. We start

with the assumption that every hospital probably has the average

risk-adjusted rate of complications.33 Our estimation methodology

then calculates the risk-adjusted rate of complications for each hospital

observed in our data, and “shrinks” it towards this prior expectation in

proportion to hospitals’ size. This means that more extreme data is

required from small hospitals in order for our model to conclude that

their performance is above or below average.

A more formal description of the shrinkage effect we achieve by using

an empirical Bayes estimator is provided in Section 2.5.2.

Strategy 3: Impose a minimum sample size for hospitals

A further precaution we employ to protect against outlier performance

scores is to impose a minimum sample size for hospitals. Table 2.4

presents the cut-off hospital volumes employed in each subsample,

and the number of observations affected. Rather than excluding these

observations entirely, we grouped all hospitals smaller than these

thresholds, and treated each of these groups of hospitals as a single

institution.

Strategy 4: Benchmark performance relative to a large group of

hospitals

Finally, we minimise the sensitivity of our performance benchmark to

any remaining mean reversion through general robustness to outlier

performances. As argued in Section 2.4.1, defining the benchmark rate

of complications with order statistics reduces the chance that hospitals’

scope to improve is calculated relative to an outlier complication rate.

33. It’s from this assumption that our approach got its name: empirical Bayes. This

approach is empirical because, unlike most Bayesian approaches, our assumption

regarding the true values of our estimated parameters is derived entirely from our

data. Consequently, this methodology sits half way between the frequentist and

Bayesian traditions.
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Just as this approach minimises the risk of setting aspirations relative

to what can be appears to be achieved when coding quality is poor, it

also minimises the risk that aspirations are defined relative to an outlier

result that, instead of being sustainable, will revert to the mean.

Diagnostics

Figure 2.3 on the next page presents the proportion of hospitals in each

quintile of cardiology performance by their quintile of performance in

the previous year. These rankings are reasonably stable: about 85 per

cent of hospitals are in the same or neighbouring performance quintile

from year to year.

This finding provides assurance that the hospitals with the most

extreme performance estimates are not particularly prone to mean

reversion. We expect that estimates employed in All complications

should count are even less so because they are calculated over three

years rather than the single years used for this analysis.

2.5 Model specification

As introduced in Section 2.1, the objective of our analysis is to iden-

tify the rate of complications at each hospital in excess of the rate

expected, given the risk profile of their patients. In this section, we

describe the model specification we use to estimate each hospital’s

excess complication rate.

Further to the general model specification described in Section 2.1

and the choice of risk adjustment terms given in Section 2.2, there

are three distinctive characteristics of our model specification. Firstly,

we use a logit generalised linear model to accommodate the binary

nature of our dependent variable: whether patients experience at least

one complication. Secondly, we use a random effects specification to

estimate the excess risk associated with each hospital. Finally, we

Table 2.4: Categorisation and grouping of small hospitals

Cut-off, number of

admissions

Number of hospitals Number of

admissions

Collectively exhaustive subsamples

Obstetric

<50 259 3,895

50-99 38 2,708

100-199 35 5,006

Non-obstetric, sameday

<50 34 649

50-99 21 1,481

100-149 26 3,194

150-199 14 2,398

Non-obstetric, multiday

<100 60 2,380

100-149 16 1,962

150-199 21 3,704

Case studies

Medical cardiology

<100 252 10,495

100-149 51 6,144

150-199 45 7,727

Knee replacement

<100 40 1,851

100-149 15 1,892

150-199 14 2,499

Bariatric surgery

<50 108 1,105

50-149 9 825

150-199 5 864
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include variables containing the mean value of patient characteristics

for each hospital in our risk adjustment model.

In this section, we discuss the justifications for and implications of these

decisions. We conclude by formally stating our full model specification.

2.5.1 A Logit Generalised Linear Model functional form

As discussed in Section 2.2, we treat the incidence of complications

as a binary variable to avoid challenges associated with dependence

between the first and subsequent complications. This has implications

for the appropriate specification of our outcomes research model.

The multiple linear regression approach used in outcomes research

requires the error component of the model to be normally distributed.

Binary dependent variables cannot satisfy this requirement because the

residual error term that results from modelling a binary variable with a

linear combination of predictors is not normally distributed.

The consequences of proceeding with a linear model specification re-

gardless would include: predictions of the model not being constrained

within zero and one, unreliable model predictions at both extremes

and heteroscedasticity, which would reduce the efficiency and result

in incorrect estimates of the coefficients’ standard errors.34 These

problems would impede our ability to accurately identify differences

in hospitals’ performances, especially for particularly poor and high

performing hospitals.

To avoid these problems, we adopt a more general model specification:

the logit Generalised Linear Model (GLM). The logit GLM assumes that

the log-odds of the dependent variable can be described by a linear

combination of predictors:

log

(︂

p

1− p

)︂

= β1X1 + . . .+ βKXK

34. Angrist and Pischke (2009).

Figure 2.3: Hospital ranks are reasonably stable over time

Hospital performance quintile by year, multiday cardiology admissions

FY 2012-13 FY 2013-14 FY 2014-15

Safest 20% 
of hospitals

Least-safe 
20% of 

hospitals

Source: Grattan analysis of the 2012-15 National Hospital Morbidity Dataset.
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Where:

p is the probability of a patient experiencing at least one combina-

tion;35

X1, . . . , XK are the risk factors and hospital performance indica-

tors that linearly explain the log-odds of a patient experiencing a

complication

The GLM specification is important for accommodating the binary

nature of our dependent variable. It also facilitates an intuitive interpre-

tation of how patients’ risk factors interact: the marginal risk associated

with any risk factor, such as age, is assumed to depends on all of the

other characteristics of a patient, like whether they have diabetes.36

The interdependent interpretation of GLMs’ components means that

the excess risk associated with a hospital’s care can only be quantified

relative to a particular patient’s risk profile.37 Given this, there are three

ways that we can calculate the marginal impact of a hospital’s safety on

its patients’ safety:

1. We can calculate the additional risk of a complication associated

with a particular hospital for each patient, accounting for the values

that other components of the model, like age and gender, take in

each case. Such estimates of hospital risk will be different for each

individual.

35. p is a latent variable. We observe whether a complication occurred, which is linked

to the latent probability variable through the inverse Binomial distribution.

36. Specifically, the first order derivative of the probability of a complication, p, relative

to any given covariate, Xk, is given by the following expression:

dp

dXk

=
exp(β1X1 + · · ·+ βnXn)

(1 + exp (β1X1 + · · ·+ βnXn))
2
∗ βk.

37. Wooldridge (2010).

2. We can calculate the additional risk of a complication associated

with a particular hospital for the average patient in each particular

hospital.

3. We can calculate the additional risk of a complication associated

with a particular hospital as if the average patient across all

hospitals was admitted to that hospital.

We use the second approach when estimating the number of complica-

tions that could be avoided, but the third approach when drawing com-

parisons across hospitals. This is to ensure that we are not suggesting

that fictional complications could be avoided, but comparisons between

hospitals are made on a like for like basis.

2.5.2 A random effects specification of hospital performance

As stated in Section 2.1, the general model specification used for

outcomes research is given by:

G(Pr (adverse outcome)) = patient’s condition + hospital characteristics +

quality of hospital’s care + random chance

In practice, there are three ways that the hospital component of this

model can be estimated.

Pooled effects approach

A pooled effects approach – also known as indirect standardisation – is

the most intuitive to understand. This approach involves estimating the

likelihood of a complication on the basis of the risk adjustment terms

only:

G(Pr (adverse outcome)) = patient’s condition + hospital characteristics +

random chance

Grattan Institute 2018 28



All complications should count: Using our data to make hospitals safer (Methodological supplement)

This formula is then used to predict the rate of complications that

should be expected for each hospital, given the risk profile of each of

their patients. The safety of each hospital is then summarised by the

ratio of their observed rate of complications, relative to their expected

rate:38

Hospital performanceh =
Observed rateh

Expected rateh

Where, for a given hospital, h:

Expected rateh =
∑︁

i∈h

Pr(adverse outcome)ih

=
∑︁

i∈h

G−1(patient’s conditionih + hospital characteristicsih)

The pooled effects approach is the most common approach used

in public policy applications of outcomes research.39 However, the

methodology has been consistently recognised in the statistical and

health economics literature as being second-best for two reasons.40

Firstly, when hospital performance is correlated with patient char-

acteristics, estimates of hospitals’ performance will be biased.41

Secondly, the unacknowledged correlation between the outcomes

of patients admitted to the same hospital will result in systematically

underestimated standard errors. This error in the coefficient estimates

can be corrected at a slight cost to the model’s efficiency by using

38. Iezzoni (2012).

39. Ibid.

40. Krumholz et al. (2006); and Ash et al. (2012).

41. This is also the case with the random effects approach we employ. In both

instances, this problem can be rectified by including Mundlak means in the model

specification, as discussed in Section 2.5.3. That is, the exclusion of hospital

indicators from the model specification will result in Omitted Variable Bias where

there is correlation between the independent variables and hospital indicators:

Cameron and Trivedi (2005).

cluster robust standard errors. However, reasonable standard errors

for the ratio of observed to expected complication rates are difficult to

obtain.42

Regardless, we use this methodology when estimating hospital perfor-

mance on each of the 160 minor CHADx+ classes in the heat map in

All complications should count, because it is far less computationally

intensive than the alternative approaches.

Fixed effects approach

An alternative to pooled estimation is to include terms in the risk

adjustment model directly – that is, to undertake direct standardisation.

The simplest way to do this is through a fixed effects specification

which means that a variable is included in the model for each hospital:

G(Pr(adverse outcome)) = patient’s condition + hospital characteristics

+ δ1H1 + · · ·+ δHHH + random chance

Where H1, . . . , HH are indicator variables for each hospital, 1 to H ;

equal to 1 for patients that attend that hospital, and 0 otherwise.

In such model specifications, the coefficient associated with each

hospital, δh, can be interpreted in a similar way to the observed-to-

expected ratio used in pooled effects specifications: they are estimates

of the additional risk of a complication associated with that hospital.

The fixed effects approach produces unbiased estimates of hospital

performance and facilitates easy computation of the standard errors of

each hospital’s performance metric.43 However, it has a higher mean

squared error, lower efficiency and provides less information about the

42. These could be obtained within a frequentist approach using bootstrapping.

However, this would be extremely computationally intensive.

43. Cameron and Trivedi (2005).
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impact of hospital choice on patient outcomes than can be achieved

with a random effects specification.44 The fixed effects approach can

also suffer from the incidental parameter problem, which can cause

estimates of hospital performance to be inconsistent.

Random effects approach

Our analysis employs an alternative direct standardisation approach

that treats hospital indicator variables as random, rather than fixed. At

a high level, this random effects approach can be specified in the same

terms and interpreted in the same way as the preceding fixed effects

equation.

However, in the context of measuring hospital performance, the random

effects approach offers three distinct advantages.

Firstly, a random effects approach is, statistically, more efficient than

a fixed effects approach.45 This is because random effects models

use the assumption that hospital’s performances belong to a common

distribution to reduce the number of parameters in the model – which

means there are more observations with which to estimate each of

the models’ parameters.46 Consequently, hospital performance can be

estimated more precisely using a random effects approach.

44. Ash et al. (2012); and Bell and Jones (2015).

45. Ash et al. (2012).

46. Both this attribute of the random effects approach and fixed effects’ incidental

parameter problem, a source of potential bias in the estimates of fixed effects,

are attributable to the substantial difference in the degrees of freedom under the

two approaches when there is a large number of groups. We don’t emphasise the

incidental parameter problem because the findings of Moran and Solomon (2014)

suggest this is not a big problem when analysing hospital performance because

hospitals’ sample sizes are so large.

A second advantage is that the default methodology for estimating ran-

dom effects is more robust to outliers than the alternative approaches.47

Under pooled and fixed effects approaches, the only information that

determines hospitals’ performance estimates is the relative prevalence

of complications in that institution, relative to the expectations set by

risk adjustment. The random effects approach differs in that because

the distance of each performance estimate from the average is also

taken into account.

Constrained by the assumption that hospital performance is normally

distributed, the random effects estimates of hospital performance are

“shrunk” towards the mean performance in proportion to each hospital’s

size.48 By requiring more evidence of outlier performance from smaller

institutions, the statistical tendency of smaller groups to be more prone

to outlier results is counteracted.

This innovation makes the random effects estimates of hospital

performance more accurate than those from fixed effects models,

on average.49 True outlier performances will likely be estimated with

a greater error under this specification than under a fixed effects

specification. However, this error will be in the conservative direction.

The third – and, in our context, most significant – advantage of a

random effects approach is that it allows us to explicitly acknowledge

47. Shahian et al. (2005). As this attribute of the random effects approach is

attributable to the empirical Bayes estimation methodology with which they are

routinely estimated, it could also be achieved under a fixed effect specification.

See, for instance, Jacob and Lefgren (2005).

48. Random effects differ in this way from fixed effects because they are derived

from the structure of the residual variance after the fixed component has been

estimated. The shrinkage property comes from using Empirical Bayes estimation

to derive these estimates. This the default estimation methodology of random

effects for many statistical programs, including the Stata package GLLAMM

employed in our analysis.

49. James and Stein (1961).
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our hypothesised data generating process in our model, and estimate

particular characteristics of this process.

We hypothesise that the complication risks patients face are not

independent. Rather, we expect these risks to be correlated within

hospitals, because patients in the same hospital are exposed to many

of the same processes and staff.

We’re interested in these sources of correlation for two reasons. Firstly,

the proportion of total variation in outcomes that is explained by each

of these sources of correlation is of policy relevance. The variance

decomposition analysis summarised in Section 3.1.1 would not be

possible using a fixed effects specification.

Secondly, if these sources of correlation were not acknowledged in

the covariance structure, estimates of the standard error of hospital

performance metrics would be downwardly biased unless corrected for

using clustered standard errors,50 which would be less efficient – and

as a consequence, less precise.51

For these reasons, as well as the advantage over the pooled approach

shared with the fixed effects approach, we opt to use a random effects

model approach. This results in a model specification which can be

written as:

G(Pr(adverse outcome)) = patient’s condition+hospital characteristics+αh

Where:

αh is the hospital-level random effects that are normally distributed:

αh ∼ N(0, σ2
H)

50. For example, Moran and Solomon (2014) use a fixed effects specification with

cluster-robust standard errors.

51. Cameron and Trivedi (2005).

Another way of thinking of this model is as a hierarchical equi-

correlation model. This means that we assume the outcomes achieved

for patients in the same hospital, h, are all correlated to each other

by the same amount. The outcomes of patients treated in different

hospitals are assumed to be independent.

Of course, the random effects approach also has disadvantages

relative to the fixed effects approach. We summarise these in Box 1

on the following page and discuss how we mitigate the most restrictive

of these – potential bias in the estimates of hospital performance

associated with correlation between hospital performance and patient

risk – in the next section.

2.5.3 The inclusion of Mundlak means in the risk adjustment

model

The advantages and disadvantages of random effects specifications

relative to fixed effects specifications are summarised in Box 1. The

first of each of these listed are critical for our analysis: we want to be

able to estimate the proportion of variation attributable to hospital per-

formance but also require our estimates to be correct on average, even

if hospital performance is correlated with patient risk characteristics.

We can achieve both these objectives without requiring hospital

performance to be uncorrelated with patient characteristics by including

hospital-level Mundlak means in our risk adjustment model.52 A random

effects model with Mundlak means is considered “part-way” between

a random effects and fixed effects approach but out-performs both

approaches in finite samples.53

Conceptually, the inclusion of Mundlak means constitutes controlling

for potential externalities from individual patients’ risk profiles in our

52. Bafumi and Gelman (2006); and Bell and Jones (2015).

53. Ash et al. (2012); and Dieleman and Templin (2016).
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Box 1: Summarising the advantages of random effects relative to fixed effects

Advantages:

1. More information: the random effects approach allows nested

hierarchical variance structures to be estimated directly, which

then allows the proportion of variation in patient outcomes

attributable to hospital performance to be estimated.a

2. More accurate: the random effects approach reduces the average

error in hospital performance estimates by shrinking estimates

towards the mean.b

3. More efficient: by requiring the estimation of fewer parameters,

the random effects approach allow all elements of the model,

including hospital performance estimates, to be estimated with

greater precision. The standard errors estimated by random

effects models are also correct, which means post-estimation

corrections that reduce efficiency are not required.

Disadvantages:

1. Stronger assumptions: Random effects specifications require

two more assumptions than fixed effects models:

a) that hospital performance is uncorrelated with patient risk

factors; and

b) that hospital performance is normally distributed.

If the first of these assumptions is violated, estimates of hospital

performance will be biased.c

2. Less extreme estimates: The flip side of the greater accuracy

achieved using the shrinkage of empirical Bayes is that some im-

probably extreme performances will be estimated less accurately.d

3. More computationally intensive: Random effects models are

more computationally intensive, and can be substantially so in

non-linear models.

a. Ash et al. (2012).

b. As flagged earlier, empirical Bayes estimation can also be applied to fixed effects estimation methodologies.

c. The assumption of normality is justified in this context because the Bayesian central limit theorem establishes that, as the number of units in a random effects cluster increase, the

posterior density tends toward multivariate normality. Our average hospital size of 231,760 admissions and minimum size of 100 is sufficient for this asymptotic property to hold

approximately. Regardless, the evidence on whether violating this assumption results in significant bias is mixed.

d. Kalbfleisch and Wolfe (2013).
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risk adjustment model, in addition to controlling for individual patients’

risk profiles. Such externalities may arise when the complexity of one

patient’s condition affects the resources available for assisting other

patients.

In practice, it means that the hospital-level average of each covariate

is included in the risk adjustment model as well as the raw patient-level

variable. Including separate variables for within-hospital and between-

hospital variation in risk factors ensures that the impact of both of these

factors on hospitals’ outcomes are properly accounted for.

Controlling for these differences is not an overly conservative risk-

adjustment choice. It’s difficult to believe that the hospitals with the

sickest patients are systematically worse than other hospitals. In fact,

it improves our model’s ability to account for hospital-level differences

in patient risk which, as discussed in Section 2.3, is the is primary

objective of our risk adjustment model.

2.5.4 Overall model specification

In the preceding sections, we have described the overarching logic

of outcomes research models, the basis on which variables have

been included (or excluded) from the risk adjustment component of

our model, and the reasons why we have employed a logit model

specification with hospital-level random effects. In this section, we

combine these characteristics and formally state the models we have

estimated.

We’ve chosen to use a logit(.) link function and applied to the depen-

dent variable CHADx+, which is equal to 1 if a patient experienced at

least one complication and 0 otherwise. logit CHADx+ is equivalent to

log
pih

1− pih
,

where pih is a given patient’s (unobserved)

probability of experiencing a complication. Consequently, our model

can be interpreted as linear model of patients’ log-odds of experiencing

a complication. All of the results that feature in All complications should

count have been transformed so that they are expressed in terms of a

patient’s probability of experiencing a complication.

Our formal outcomes research model specification is:

logit(CHADx+ih) = x
′

ihB+ x̄
′

hB̂MM + x
′

hBH + αh

We estimate this model in two stages:

Stage 1:

logit (CHADx+ih) = x
′

ihB

From which we obtain:

p̂ih =
exp(x′

ihB̂)

1 + exp(x′

ihB̂)

Stage 2:

logit(CHADx+ih) = p̂ihβ + p̂hβMM + x
′

hBH + αh

Where:

i refers to any of the N admissions,

h refers to any of the H hospitals.

Bold is used to indicate where a term is a vector containing

multiple variables;

xih is the vector of patient-level independent variables employed for

risk adjustment, which are listed in Table 2.1 on page 19. These

variables are combined into a single patient-level risk estimate,

p̂ih, in our first-stage models. They are then only included

indirectly, through p̂ih, in our second stage model;
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x̄
′

ih is the vector of hospital-level (“Mundlak”) means of the patient-

level dependent variables employed for risk adjustment. As the

independent variables are included in the second-stage model

through p̂ih, the hospital-level average of this term, p̂h , is the

appropriate transformation of xh for the second-stage model;

x
′

h is the vector of hospital-level independent variables employed for

risk adjustment, which are listed in Table 2.3 on page 21. They are

included directly in our second stage model.

B is the vector of coefficients associated with xih and BMM is the

vector of coefficients associated with the Mundlak means of the

patient-level regressors. These vectors become scalars in the

second stage model, when the vectors of covariates and Mundlak

means are collapsed into single variables. BH is the vector of

coefficients associated with the hospital-level regressors;

αh refers to the hospital membership random effects term, which

takes the same value for every patient within each hospital. Across

all hospitals, this variable is assumed to be normally distributed

with variance σ2
H : αh ∼ N

(︀

0, σ2
H

)︀

.

13 models of this specification have been estimated, one on each of

the following subsamples:

∙ Obstetric admissions

∙ Non-obstetric multiday admissions

∙ Non-obstetric sameday admissions

∙ Multiday bariatric admissions

∙ Multiday knee replacement admissions

– Also run separately by patient age group

∙ Multiday medical cardiology admissions

– Also run separately by financial year

We also estimated one model using the incidence of HACs, rather than

CHADx+ as the dependent variable. This was completed using the

multiday medical cardiology subsample.

2.5.5 Estimation methodology

The estimation of random effects models proceeds in three stages.

First, the correlation matrix implied by the random effects specification

is integrated out of the model’s likelihood function. Second, the fixed

component of the model is estimated by maximising the remaining

likelihood function. That is, the estimates of the fixed component of

the model’s parameters are optimised taking the random component’s

correlation structure as a constraint. Finally, the estimates of the

random effects terms are recovered from the model’s residuals.

We use numerical integration for the first stage of our model’s es-

timation. This is because nonlinearities in the functional form of

random effects models precludes analytical optimisation by either

least squares or maximum likelihood estimation. We choose to use

adaptive quadrature over other approaches like Maximum or Penalised

Quasi-likelihood approaches because it’s the most stable and accurate

of these approaches.54

We then use the Newton Raphson algorithm to estimate the parame-

ters of the fixed component of the model from the remaining likelihood

function.

54. The superior performance of adaptive quadrature is attributable to the fact that the

approach is Gaussian (the spacing of integration points are determined using the

roots of a polynomial rather than naïve equal spacing) and uses importance-based

sampling (it samples more intensively in areas of the likelihood function where

there is more data): Rabe-Hesketh et al. (2002) and Haan and Uhlendorff (2006).
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Finally, we estimate the values of the random effects terms using

empirical Bayes estimation. This involves conditioning the likelihood

function for the hospitals’ random effects terms, which is derived from

the model’s residual, on the prior distribution of the random effects.

The approach is called empirical Bayes because the prior distribution

of the random effects is defined by the empirical moments of the data

and the assumption of normality. The posterior means that constitute

the random effects estimate for each hospital are then obtained using

non-adaptive quadrature.

We prefer this approach to estimating the random effects terms to

ordinary frequentist or Bayesian estimation because it achieves a lower

mean squared error than either approach and mitigates against the

‘bouncing beta problem’ that can afflict models with a large number of

random effects terms.55 It achieves these properties by shrinking hospi-

tals’ random effects estimates towards the prior in inverse-proportion to

hospitals’ sizes.

Finally, we note the standard errors of the random effects terms that

we have used to make inferences about hospital performance are

comparative, rather than diagnostic, standard errors. These errors

are calculated separately for each hospital because they relate to the

sampling error of each individual random effect, and this depends on

each hospital’s size and the proportion of its variation in outcomes that

can’t be explained by the fixed component of the model.56

We estimate these error terms from the random effects’ posterior

distributions because, assuming the prediction errors are normally

55. Rabe-Hesketh and Skrondal (2008).

56. See Rabe-Hesketh and Skrondal (ibid.) for a full discussion of the difference

between diagnostic and comparative standard errors for empirical Bayes

estimates of random effects, and the various alternative approaches to estimating

comparative standard errors.

distributed,57 these standard deviations are accurate conditional and

unconditional measures of the mean squared error of prediction even in

nonlinear contexts.58 The limitation of this approach is that the sampling

variation of the model’s parameters is not accounted for. Accordingly,

these estimates of the random effects’ terms comparative standard

errors are not exact.59

We implement this estimation methodology using Rabe-Hesketh and

Skrondal GLLAMM package in version 15 of Stata.

57. The normality assumption is justified in binary response models because the

Bayesian central limit theorem establishes that, as the number of units in a

cluster increase, the posterior density tends toward multivariate normality. As

this is an asymptotic property, we ensure a minimum hospital sample size of 100

admissions.

58. Rabe-Hesketh and Skrondal (2008).

59. This could be resolved through bootstrap estimation of each hospital’s compara-

tive standard error, but the computational intensity of this approach was prohibitive

in our context.

Grattan Institute 2018 35



All complications should count: Using our data to make hospitals safer (Methodological supplement)

3 Results

In the preceding chapters, we have set out our data sources, explained

the derivation of additional variables, and laid out the model specifi-

cation we used to estimate the excess risk of a complication at each

hospital. In this chapter, we take all these variables – including the

hospital performance metrics – as given, and summarise our results.

Table 3.1 on the next page presents summary statistics on our

dependent variable, CHADx+. Section 3.1 summarises the results of

our hospital performance models, Section 3.2 presents our diagnostic

analysis of these models, Section 3.3 presents other supporting

analysis and Section 3.4 presents a stability analysis.

3.1 Hospital performance metrics

All complications should count uses 13 models of hospital performance

to investigate variation in safety across hospitals: one for each of

the six subsamples defined in Table 1.2, and the seven required

to compare hospital performance across age categories for knee

replacement patients, and compare performance across years using

the medical cardiology sample. In this section, we collate the key

findings of these models.

3.1.1 Variance decomposition

For each model, we estimate the proportion of variation explained by

the regressors, hospital performance, and state performance or coding

differences, and the proportion of variation that remains unexplained.

Estimates of the standard deviation of our models’ hospital effects (σH)
are obtained directly from the output of each model. By construction,

the variance of the residual term of a logit model is π2/3. To estimate

the proportion of variation in outcomes explained by the regressors, we

use the pseudo-R2 proposed for binary dependent variable models by

McKelvey and Zavoina (1975).

R2
MZ =

1
N

∑︀

i(xiβ̂ − xβ̂)2

π2/3 + σ2
H + 1

N

∑︀

i(xiβ̂ − xβ̂)2

We follow Zhang et al. (2013) in using this pseudo-R2 in combination

with the estimated variances of our random effects terms to define

variance partition coefficients:

VPCH |σ2
H , R2

MZ =
σ2
H

π2

3 + σ2
H + 1

N

∑︀

i(xiβ̂ − xβ̂)2

VPCε |σ
2
H , R2

MZ =
π2/3

π2

3 + σ2
H + 1

N

∑︀

i(xiβ̂ − xβ̂)2

These figures can be interpreted as the proportion of variation in

outcomes that can be explained by observable hospital and patient

characteristics, hospital performance, and the proportion of variation

in outcomes that cannot be explained by these factors. Our estimates

of these figures for each model are presented in Table 3.2.

Estimates relating to the whole sample are calculated as a weighted

average of the estimates from the obstetric, non-obstetric multiday

and non-obstetric sameday samples, weighted by sample size. These

figures are also summarised in Table 3.2.
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Table 3.1: Prevalence of complications, by complication type and sample

Admissions

All Public hospital Private hospital Case studies

Mean Std.dev. N Mean Std.dev. N Mean Std.dev. N Mean Std.dev. N
Any length of stay Bariatric surgery

CHADx+ 10.63% 30.82% 13.19% 33.83% 6.43% 24.53% 15.49% 36.18%

CHADx 9.18% 28.87% 11.47% 31.86% 5.41% 22.63% 14.76% 35.47%

CHAPx 3.84% 19.21% 4.76% 21.30% 2.31% 15.04% 2.20% 14.68%

HACs 1.72% 12.99% 2.29% 14.95% 0.78% 8.79% 1.85% 13.49%

25,175,958 15,648,510 9,527,448 37,691

Multiday admissions Medical cardiology

CHADx+ 27.01% 44.40% 27.72% 44.76% 24.87% 43.23% 16.79% 37.38%

CHADx 24.25% 42.86% 24.77% 43.17% 22.67% 41.87% 14.96% 35.67%

CHAPx 9.31% 29.05% 9.65% 29.53% 8.26% 27.52% 2.80% 16.50%

HACs 5.17% 22.15% 5.70% 23.18% 3.58% 18.57% 4.58% 20.91%

8,037,258 6,043,377 1,993,881 562,725

Sameday admissions Knee replacement

CHADx+ 2.95% 16.91% 4.04% 19.70% 1.55% 12.35% 33.96% 47.36%

CHADx 2.11% 14.37% 3.10% 17.33% 0.85% 9.17% 27.97% 44.89%

CHAPx 1.27% 11.20% 1.68% 12.87% 0.74% 8.58% 8.61% 28.05%

HACs 0.10% 3.09% 0.14% 3.74% 0.04% 1.98% 5.27% 22.34%

17,138,612 9,605,094 7,533,518 139,754

Notes: These subsample sizes include observations that were missing data on independent variables to be used in regression analysis. Differences between the coding practices of public

and private hospitals mean that direct comparisons of public and private sector complication rates are not meaningful.

Source: Grattan analysis of the 2012-15 National Hospital Morbidity Dataset.
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3.1.2 Estimating each hospital’s excess risk of a complication

The second component of our model of relevance to All complications

should count is the estimates of hospital performance: that is, the

random effects series, αh, which takes a particular value for each

hospital. Except where surgeons operate across a large number of

hospitals, any “surgeon effect” will swept up in these terms.

As described in Section 3.1.1, our logit model specification makes

these random effects terms difficult to interpret. When estimated, they

are expressed in terms of patients’ log odds of a complication. To

express these terms as probabilities, we calculate the probability that

a given patient experiences a complication with and without accounting

for the performance of their hospital, average across all patients and

take the difference:60

Pr(CHADx+ih | Xih) =
exp (X′

ihB)
(︀

1 + exp
(︀

X
′

ihB
)︀)︀

Pr(CHADx+ih | Xih, αh) =
exp (X′

ihB+ αh)
(︀

1 + exp
(︀

X
′

ihB+ αh

)︀)︀

Riskh =
1

N

(︃

∑︁

i∈N

Pr(CHADx+ih | Xih, αh)−
∑︁

i∈N

Pr(CHADx+ih |Xih)

)︃

Where X
′

ihB is shorthand for x′

ihB+x
′

hBMM +x
′

hBH , which is defined

in Section 2.5.4.

We have specified our model such that αh has a mean of 0 across all

hospitals. It follows that patients in the top performing half of hospitals

will have a lower probability of a complication than the risk adjustment

60. In every instance where we draw comparisons across hospitals, Riskhis calculated

by averaging Pr(CHADx+ih | Xih) and Pr(CHADx+ih | Xih, αh) across all

patients, even those who did not attend that particular hospital, h. This is so that

all hospitals are being assessed relative to the same cohort of patients.

Table 3.2: Variance partition coefficients by model

R2

MZ VPCH VPCε

Mutually exclusive, collectively exhaustive subsamples

Obstetric 72% 2% 26%

Non-obstetric multiday 41% 10% 50%

Non-obstetric sameday 33% 10% 57%

Full sample 38% 9% 53%

Case studies

Multiday bariatric surgery 61% 8% 31%

Multiday cardiology 27% 10% 63%

2012-13 28% 12% 60%

2013-14 27% 11% 62%

2014-15 26% 9% 65%

Multiday knee replacement 40% 9% 51%

0 – 49 years 41% 6% 53%

50 – 64 years 38% 9% 53%

64 – 74 years 39% 9% 51%

75+ years 42% 9% 49%

Source: Grattan analysis of the 2012-15 National Hospital Morbidity Dataset.
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component of our model predicts, and patients in the bottom performing

half of hospitals will have a higher probability. Consequently, Riskh will

be positive for half the hospitals in our data, and negative for half the

hospitals.

We further calculate the excess risk of a complication that a patient

faces because they did not attend the best performing hospital as

follows:

Excess riskh = Riskh −min
h∈H

Riskh

= Pr(CHADx+ih | Xih, αh)− Pr(CHADx+ih | Xih,min
h∈H

(αh))

Accordingly, Excess riskh = 0 for the safest hospital, and is positive for

all other hospitals.

We calculate approximate 95% confidence intervals around these

excess risk estimates as follows:

Excess riskh,LB = Pr(CHADx+ih | Xih, αh − tcritLOS=0.025 * se(αh))

− Pr(CHADx+ih | Xih,min
h∈H

(αh))

Excess riskh,UB = Pr(CHADx+ih | Xih, αh + tcritLOS=0.025 * se(αh))

− Pr(CHADx+ih | Xih,min
h∈H

(αh))

95% confidence intervalh = (Excess riskh,LB,Excess riskh,UB)

These confidence estimates are approximate for two reasons. Firstly,

as we note in Section 2.5.5, the comparative standard errors of the

random effects estimates obtained from Stata’s GLLAMM do not

account for the estimation error around each of the parameters in the

fixed component of our model.

Secondly, our approach to calculating confidence intervals treats

our estimate of minh∈H(Riskh) as a fixed benchmark off. Of course,

minh∈H(Riskh) is also estimated with uncertainty. There are no

simple remedies to these problems.61 Instead, we recommend that our

estimates of the confidence intervals surrounding our random effects

estimates are approximate.

Secondly, we’re interested in is constructed around these estimates of

excess risk using the standard errors estimated for each random effect

by Stata’s GLLAMM package, se(αh):

Inter-hospital comparisons

All complications should count uses inter-hospital comparisons to

estimate the scope for complications to be reduced in aggregate, and

to showcase that there is such scope for improvement within every

state.

Here, we present caterpillar plots of all the excess risk estimates

underpinning these calculations, by admissions sample. Each dot on

a caterpillar plot represents a specific hospital’s scope to improve, and

the line extending above and below each point represents the 95 per

cent confidence interval of this estimate.

These confidence intervals are appropriate for testing single hypothe-

ses, such as whether a hospital’s complication rate is different from a

particular peers’. They are not appropriate for drawing inference about

whether a given hospital’s performance is different from a set of their

peers’ performances.62

61. These problems could be resolved within our frequentist approach using

bootstrapping, or by switching to a Bayesian estimation approach.

62. We emphasise this point because caterpillar plots are often misused in this way:

Moran and Solomon (2014). A Bonferroni correction would need to be applied to

the confidence intervals we have presented in order to apply the same level of

confidence to multiple hypothesis tests, as the joint probability of multiple events

with 95 per cent probability is less than 95 per cent: Dunn (1959).
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Figure 3.1: Excess risk varies substantially for multiday admissions

Excess risk by hospital, non-obstetric multiday admissions
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Source: Grattan analysis of the 2012-15 National Hospital Morbidity Dataset.

Figures 3.1 to 3.2 present excess risk estimates for each hospital’s

multiday and same day non-obstetric patients. The most significant

difference between these graphs is that the excess risk for multiday

patients at any hospital dwarfs that faced by same day patients.

This difference is in line with our expectations, as complications are

nine times more common among multiday admissions. It also indicates

that, when multiday and same day admissions are considered together,

estimates of the scope to reduce complications will be substantially

lower, but the relative safety of a hospital’s same day care will have little

bearing on how its safety compares to its peers overall.

Figures 3.3 to 3.4 on the following page present excess risk estimates

for medical cardiology admissions and multiday bariatric surgery.

Figure 3.2: Excess risk varies modestly for sameday admissions

Excess risk by hospital, non-obstetric sameday admissions
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Source: Grattan analysis of the 2012-15 National Hospital Morbidity Dataset.

The substantial difference in the number of hospitals providing these

services affects the number of outliers we observe across the samples.

Evidently, the precision with which meaningful feedback on relative

performances can be provided will depend on the generality of the

admissions compared.

The large number of medical cardiology admissions makes this sample

particularly informative about the relative safety of hospitals’ care. The

medical cardiology sample was also relatively homogeneous, which

made it feasible to conduct risk adjustment separately for each DRG.

Together, these characteristics make the medical cardiology excess risk

estimates the most robust of our samples.
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Figure 3.3: Most hospitals provide medical cardiology care

Excess risk by hospital, multiday cardiology admissions
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Source: Grattan analysis of the 2012-15 National Hospital Morbidity Dataset.

Figure 3.4: Few hospitals complete bariatric surgery

Excess risk by hospital, multiday bariatric admissions
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Source: Grattan analysis of the 2012-15 National Hospital Morbidity Dataset.
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Figure 3.5: Obstetric patients face a uniformly high risk of a

complication

Excess risk by hospital, obstetric admissions
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Source: Grattan analysis of the 2012-15 National Hospital Morbidity Dataset.

However, even in the bariatric surgery sample, hospital performance

can be estimated with sufficient precision to identify which hospitals are

above average performers, and which are below average performers.

Figures 3.5 to 3.7 present the excess risk estimates for obstetric

patients, medical cardiology patients (by category of complication)

and knee replacement patients (by age group). The key takeaway from

these estimates is that the amount of variation in the outcome measure

of interest is a key determinant of how much information can be derived

from performance comparisons.

For example, 46 per cent of obstetric patients experiences a CHADx

complication, but the variance of the risk-adjusted rate of complications

Figure 3.6: Some metrics are more useful for detecting differences in the

safety of hospitals’ medical cardiology care

Excess risk by hospital across cardiology admissions, for CHADx+ and HACs
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Source: Grattan analysis of the 2012-15 National Hospital Morbidity Dataset.

across hospitals is less than 1 per cent. This is because some of the

obstetric diagnoses included in the CHADx classification are common

but extremely difficult to avoid. Such events do not make particularly

informative metrics.

The HACs classification of complications was created to address such

concerns. However, the collection of complications deemed to have

good clinical preventability has not produced a more informative per-

formance metric. Figure 3.6 illustrates that the CHADx+ classification

identifies hospitals’ scope to reduce complication rates with far greater

precision.
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The usefulness of particular metrics for identifying the scope for

hospitals to improve the safety of their care also depends on the group

of patients that are of interest. Figure 3.7 shows that the risk-adjusted

prevalence of CHADx+ provides useful information about the safety

of knee replacements for older patients – even providing enough

information to identify hospitals’ different strengths. However, this

indicator is not particularly informative about which hospitals may be

better knee replacements for young people.

Finally, the variation in hospitals’ excess risk observed across these

samples also exists within states. Figure 3.8 demonstrates that excess

risk for multiday non-obstetric admissions varies substantially across

hospitals within all states, and within the private sector. Figure 3.3 in

All complications should count presents the same analysis of medical

cardiology admissions. No average differences in the safety across

states are observable in these figures because we have controlled

for differences in coding depth and any remaining differences across

states.63

Intra-hospital comparisons

We also investigated differences in the safety of care within hospitals.

For this analysis, hospitals’ excess risk was estimated relative to their

average patient, rather than the average patient across all hospitals.

The comparison of these excess risk estimates for particular hospitals

across each sample of admissions is presented as Figure 3.5 of All

complications should count.

All complications should count also uses these estimates to demon-

strate that risk adjustment is required in order to infer whether a

hospital’s complication rate is above or below what should be expected.

63. Any apparent differences in the average excess risk across states is attributable

to different numbers of private hospitals within each state, and differences in the

number of outliers that needed to be excluded.

Figure 3.7: CHADx+ provides little information about the relative safety

of knee replacements in younger patients

Excess risk by hospital and age group, knee replacement admissions
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Source: Grattan analysis of the 2012-15 National Hospital Morbidity Dataset.
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Figure 3.8: Excess risk varies substantially within states

Excess risk by hospital across all multiday non-obstetric admissions
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Source: Grattan analysis of the 2012-15 National Hospital Morbidity Dataset.

Figure 3.9: Excess risk estimates explain the difference between

hospitals’ expected and observed complication rates

Share of admissions involving at least one complication (actual rate) relative

to expected rate given the risk profile of hospital’s patients, multiday cardiology

admissions that do not involve a major procedure, per cent
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Reproduced as Figure 3.9, Figure 3.1 of All complications should count

was calculated by reporting the rate of complications expected per

hospital given patient risk, and then the rate observed after hospital’s

excess risk was accounted for.

We note that the rates of specific major CHADx+ classes presented in

this figure were obtained by extrapolating the amount that each hospital

was expected to exceed (or underrun) the overall complication rate

relative to the rates of major CHADx+ classes. These figures could be

made more robust by replicating our analysis at the major CHADx+

class level.

3.1.3 Overall scope for improvement

In All complications should count, we summarise the excess risk

observed across hospitals by calculating the total scope for improve-

ment. These metrics are calculated relative to a particular quantile of

performance, q, as follows:

Scope for improvementq =
1

NH

∑︁

h∈H′

(Excess Riskh − Benchmarkq)

Where:

q the quantile that defines the target rate of complications, and

Benchmarkq is the corresponding complication rate;

Excess riskh current excess risk of a complication at hospital h, evaluated

relative to the average patient profile at each hospital;

H is the set of all hospitals in the sample

NH is the total number of hospitals in H .

H ′ is the set of hospitals such that Excess riskh − Benchmarkq > 0.

Table 3.3: Scope for improvement in complication rates

Average

rate of com-

plications

Max rate

among the

top quartile

Max rate

among the

top decile

Full sample 10.67% 8.47% 7.73%

Obstetric 46.17% 43.47% 41.22%

Nonobstetric, multiday 22.26% 16.94% 15.40%

Nonobstetric, sameday 2.12% 1.34% 1.10%

Multiday bariatric surgery 15.49% 12.56% 11.52%

Multiday knee replacement 33.96% 26.21% 23.36%

Multiday cardiology

– CHADx+ 16.79% 12.31% 10.35%

– HACs 4.58% 3.21% 2.69%

Note: As fewer complications is better, the “top” decile and quartile of hospitals are

those with risk-adjusted complication rates in the lowest decile or quartile.

Our estimates of the scope for improvement by sample are listed in

Table 3.3.

For the cardiology case study, we estimate the scope to improve

both CHADx+ and HACs. We find that the scope to reduce these

events implied by the difference between the average and top decile

hospitals’ rates is similar. This implies that the reducibility of these

events is similar, even if the base prevalence of the indicators differs

substantially.

3.2 Model diagnostics

To be comfortable with our hospital performance estimates, we have

carefully assessed each of our six key models’ fit and the reasonable-
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ness of their assumptions.64 We discuss these aspects of our models in

turn.

3.2.1 Goodness of fit

The reliability of our estimates hinges on the adequacy of our risk

adjustment, and the fit of the model overall.

Our McKelvey and Zavoina pseudo-R2 estimates show that the risk

adjustment component of our model explains between around 30 and

70 per cent of the variation in outcomes (Table 3.4). The maximum

amount of variation in outcomes that could be explained by patient risk

with perfect information is unknown, but we note that our pseudo-R2’s

are high relative to those achieved elsewhere in the outcomes research

literature.65

Our model also appears to fit our data well overall. Figure 3.10 shows

that the proportion of patients who experienced a complication accords

closely with the probability of a complication that our model assigned

them. Each bubble on these graphs represents the patients that

were allocated a particular decile of risk (x-axis). This compares

closely to the proportion of these patients who actually experienced

a complication, except where there were very few patients in the risk

decile – as indicated by a small bubble size.

The classification accuracy rates presented in Table 3.4 indicate that

our models accurately predict whether a patient will experience a com-

plication in 73 to 86 per cent of cases, depending on the subsample.66

64. Full diagnostics for our analysis of cardiology admissions in 2012-13, 2013-14 and

2014-15 separately and our separate analysis of knee replacement patients by

each age group are not presented here. However, these models fit similarly to the

overarching cardiology and knee replacement models, and are not drawn upon

extensively.

65. Zhang et al. (2013).

66. While Figure 3.10’s calibration graphs illustrate these accuracy rates calculated

across deciles, these accuracy rates are calculated at the observation level.

Table 3.4: Goodness of fit statistics

R2

MZ Classification

accuracy

AUC

Cardiology 27% 73.32% 81.65%

Knee replacement 40% 79.29% 85.92%

Bariatric 61% 85.56% 93.58%

Non-obstetric multiday 41% 77.41% 85.75%

Non-obstetric sameday 33% 81.88% 89.34%

Obstetric 72% 84.76% 92.45%

This accuracy rate applies to the group of patients who experienced

complications as well as those who didn’t.

We achieve this by setting the cut-off probability above which we

classify admissions as being expected to incur a complication equal

to the probability that minimises Youden’s index. This index weights the

model’s likelihood of correctly identifying true positives (sensitivity) and

correctly identifying true negatives (specificity) equally:67

Youden’s index(pr) = (1− sensitivity(pr))2 + (1− specificity(pr))2

It is important to define the cut-off probability in this way because we

care about the accuracy with which we can predict the rare outcome

– experiencing a complication.68 If we only cared about the overall

accuracy of our model, we could surpass these accuracy rates by

simply setting the cut-off probability at 100 per cent, and assuming pa-

tients wouldn’t experience a complication regardless of their estimated

probability. Given that only 10 per cent of patients incur complications,

we’d still be right 90 per cent of the time but would learn nothing about

the fit of our model.

67. Youden (1950).

68. Böhning et al. (2008).
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For comprehensiveness, we also present the Receiver Operator

Curves (ROC) for each model (Figure 3.11 on page 49). The curves

are formed by lining up observations by the rank of their predicted

probabilities, and extending the line upwards if the admission didn’t

involve a complication, and towards the right if it did.69 These curves

present a fuller picture of each model’s sensitivity and specificity than

classification accuracy alone.

All of our ROC curves bow out towards the top-left corner to a sat-

isfactory degree. The extent to which they do so is summarised by

the AUC statistic, and is generally considered adequate if the AUC is

approximately 80 or greater. The AUC stands for the Area Under the

ROC Curve, but is more easily understood when thought of as the

average rank of admissions which did involve a complication, given

that the observations are ordered by their predicted probability of a

complication.

Each of the pseudo-R2, classification accuracy and AUC together

mean that we can explain between 30 and 70 per cent of the variation

in outcomes by patients’ characteristics, we can accurately predict a

patient’s outcome about three-quarters or more of the time, and when

our predictions are wrong, they don’t tend to be wrong by much.

3.2.2 Validity of model assumptions

In addition to assuring each model’s in-sample fit, we have done our

best to ensure the underlying assumptions of our model specification

are valid. The key assumptions are summarised in Box 2. The

assumptions pertaining to the random effects specification discussed

in Section 2.5 are restated here as assumptions 3 and 5.

69. Cameron and Trivedi (2005).

Box 2: Model assumptions

No multicollinearity:

1. The independent variables are not collinear;

No endogeneity:

2. The residual term is not correlated with the independent

variables;

3. The random effects terms are not correlated with the residual

term;

Distributional assumptions hold:

4. The residual term is not over-dispersed;

5. The random effects estimates are approximately normally

distributed.
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Figure 3.10: Model predictions accord with observed rates across all subsamples

Calibration plots of model predictions and observed outcomes by subsample, deciles of predicted probabilities scaled by the number of observations

Bariatric Cardiology Knee replacement

Obstetric Non-obstetric multiday Non-obstetric sameday

Note: Calibration plot for the sameday non-obstetric subsample focuses on the first decile because almost all observations fell within that range.

Source: Grattan analysis of National Hospital Morbidity Dataset.
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Figure 3.11: All subsamples demonstrate satisfactory specificity and sensitivity

Receiver Operator Characteristic curves by subsample

Bariatric Cardiology Knee replacement

Obstetric Non-obstetric multiday Non-obstetric sameday

Source: Grattan analysis of National Hospital Morbidity Dataset.
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No multicollinearity

We confirmed that our independent variables were not collinear by

estimating the pairwise correlations between our independent variables.

Estimates of the correlations between patient-level covariates were all

below 20 per cent.

Our two coding quality variables, coding depth and condition onset flag

prevalence, were 50 per cent correlated. While high, this correlation

is still below the threshold of 80 per cent usually used to define

collinearity. This is not of great consequence because we do not

aim to distinguish their contribution to patients’ likelihood of having a

complication recorded. For the purpose of controlling for overall coding

quality, the 50 per cent difference between these variables is sufficient

to justify their inclusion.

No endogeneity

As discussed in Section 2.5.3, we protect against the most likely source

of endogeneity: correlation between the random effects terms and

covariates, proactively by including Mundlak means in our model

specification.

As generally the case in outcomes research, there are other potential

sources of endogeneity that could affect our model. Length of stay

is excluded because it’s an intermediate outcome variable. However,

its exclusion could cause endogeneity via omitted variable bias. Our

data also contains little information about patients’ health behaviours,

religions and care preferences. The exclusion of these types of risk

factors could also some degree of endogeneity. However, without a

valid instrument, we can’t test for or address these potential sources of

endogeneity. This is an inherent limitation of our model.

Distributional assumptions hold

We assess whether our residual term is over-dispersed by comparing

it to its assumed distribution. With a sample size of N and with P pa-

rameters, the residuals of logit generalised linear models are assumed

to be χ2 distributed with N − P degrees of freedom.70 Consequently, a

logit model can be said to be over-dispersed if the model’s total error is

greater than its degrees of freedom, and problematically so if total error

exceeds the model’s degrees of freedom by more than a factor of 5.71

We estimate the dispersion of each of our models, φ, as follows:

ϕ̂ =
Pearson χ2 statistic

N − P
=

∑︀10
d=1

(Od−Ed)
2

Ed

N − P

Table 3.5 on the following page presents our estimated dispersion

parameters by subsample. It shows that all of the models exceed

the assumed rate of dispersion of one, but not by much except for

the non-obstetric multiday sample. Such low dispersion is a positive

indication of models’ fit, as over-dispersion is very much the norm in

practice. It is likely to be attributable to the realistic way our multilevel

model structure accounts for independence between outcomes.72

The over-dispersion of our model on the non-obstetric multiday

subsample is likely to be attributable to the substantial heterogeneity

of the patients included in this sample, which limits the accuracy with

which it’s possible for us to adjust for patients’ risk profiles. We draw

this conclusion because other common causes of over-dispersion in

logit models, such as an incorrect choice of link function, influential

outliers or an exceedingly rare dependent variable, are more true of

the subsamples which do not exhibit this shortcoming.73

70. Collett (2002).

71. Carruthers et al. (2008).

72. Rabe-Hesketh and Skrondal (2008).

73. Collett (2002).
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The over-dispersion may bias the standard error estimates of this

model, so we refrain from drawing conclusions from this sample that

are not also supported in our case studies. However, we note that this

model still performed favourably on measures of goodness of fit.

Figures 3.12 and 3.13 on the next page demonstrate that our additional

assumption regarding the normality of the random effects terms is

also reasonably well supported. These estimates of the distribution

of hospital performance by subsample are not perfectly normal, but

we note model estimates have been found to be robust to modest

misspecification of random effects’ distributions.74

3.3 Other supporting analysis

Not all of the analysis contained in All complications should count is

based on the outcomes research models. In this section, we describe

the methodologies for supporting pieces of analysis.

3.3.1 Complications and length of stay

One metric with which to measure the impact of a complication on

patients’ wellbeing is number of extra days in hospital that is associated

with it, on average. However, the impact of complications on length of

stay is difficult to quantify because length of stay generally also affects

the likelihood of most complications occurring.

Conscious of this obstacle, we chose to focus our inquiry into com-

plications’ impact on length of stay on post-procedural complications.

Post-procedural complications are not endogenous with length of stay

in the same way as adverse drug events because the risk of these

complications increases with the number of procedures a patient

undergoes, rather than the days in hospital. This makes patients who

74. Neuhaus and McCulloch (2011).

Table 3.5: Estimated dispersion by model

Estimated dispersion

parameter

Is this model

over-dispersed?

Non-obstetric MD 14.22 Yes

Non-obstetric SD 1.26 No

Obstetric 1.22 No

Cardiology 1.01 No

Knee replacement 1.29 No

Bariatric 2.10 No

Box 3: Conclusions of the hypothesis test

Table 3.6: Procedural complications increase length of stay

Marginal effect P-value

Non-obstetric multiday 4.93 0.000

Multiday knee replacement 2.10 0.000

Multiday bariatric surgery 4.34 0.000

These hypothesis tests relating to the marginal effect of proce-

dural complications on length of stay are derived from models on

each subsample that are specified as follows:

length of stay = β0 + β1MCHADx1 + β2 Age + β3 Sex + ε

The marginal effect of incurring at least one procedural complica-

tion is given by β1 in the model specification.

Reported p-values relate to the hypothesis test of whether H0 :
β1 = 0 or H1 : β1 ̸= 0.
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Figure 3.12: Hospital performance is approximately normally distributed

across our case studies

Kernel densities of hospital random effects terms by subsample

Notes: Densities have been estimated using an Epanechnikov kernel with bandwidths

ranging from 0.1 to 0.2 on the raw random effects terms, depending on the series’

volatility.

Source: Grattan analysis of the 2012-15 National Hospital Morbidity dataset.

Figure 3.13: Hospital performance is approximately normally distributed

across our full sample

Kernel densities of hospital random effects terms by subsample

Notes: Densities have been estimated using an Epanechnikov kernel with bandwidths

ranging from 0.1 to 0.2 on the raw random effects terms, depending on the series’

volatility.

Source: Grattan analysis of the 2012-15 National Hospital Morbidity dataset.
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undergo a single, standardised operation, like knee replacements

patients, an appropriate focus for this type of analysis.

Figure 1.2 of All complications should count presents the differences

in average length of stay for patients who do and do not experience

procedural complications, by sample of admissions. Table 3.6 in Box 3

on page 51 presents the conclusions of our formal hypothesis tests

that length of stay differs among patients on the basis of whether they

experienced a post-procedural complication, for each sample.

3.3.2 Hospital performance aggregated to minor CHADx+

Making up the Classification of Hospital Acquired Diagnoses are 17

major classes of complications, and 159 complications. All complica-

tions should count recommends that risk-adjusted data on each com-

plication and each major CHADx+ class is provided to hospitals, as well

as risk adjusted data on their overall prevalence of any complication.

In Chapter 4 of All complications should count, we provide an example

of how each individual hospital’s data could be reported to them as a

risk-adjusted heat map. The first column of the chart is colour coded

by the hospital’s quintile of performance by each major CHADx+

class, and the subsequent columns indicate the hospital’s quintile of

performance in each of the specific complications that make up each

major CHADx+ class. This analysis was completed on non-obstetric

multiday admissions.

To obtain these risk-adjusted estimates of hospitals’ relative perfor-

mance on specific complications, we estimate additional outcomes

research models: one for each complication and for each of the 17

major classes of complications.

Without sufficient time or computing resources to fit each of these

models using a random effects, or even fixed effects, model specifi-

cation, we used a pooled effects model specification for this segment

of the analysis. This is similar to the approach employed in IHPA’s risk

adjustment model for Hospital Acquired Complications.75

To expedite this exercise, we use the patient risk term previously

estimated in relation to the prevalence of any complication. We

combine this risk factor with the hospital-level risk factors in a logit risk

adjustment model:

log

(︂

pi
1− pi

)︂

= β1Xi,1 + . . .+ βKXi,K + εi

Where:

pi is the probability that patient i experiences a given complication;

Xi,1, . . . , Xi,K are the risk factors included in the model, evaluated

relative to patient i;

And the residual term is normally distributed and homoscedastic: εi ∼
N(0, σ2).

From this model, we predict the expected log-odds ratio, ri, of each

complication for the average patient of each hospital. We convert

these to the probability that the average patient from each hospital, h,

experiences a complication using the transformation:

p̂h =
exp(r̂h)

1 + exp(r̂h)

The probability that a hospital’s average patient experiences a given

complication can be interpreted as the expected rate of that com-

plication for that hospital. Accordingly, we compute the observed to

75. IHPA (2017).
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expected ratio of complications used to measure hospital performance

from pooled specifications of outcomes research models using p̂i:

Hospital performancec,h =

∑︀

i∈hCHADxc/nh

p̂h
=

Observed ratec,h

Expected ratec,h

Where:

c indicates the complication of interest

h identifies any particular hospital

nh is the number of admissions within hospital h

Using this methodology, risk adjusted estimates of hospitals’ perfor-

mance in each complication and major class of complications were

obtained. The exemplar for our proposed reporting scheme was then

colour coded on the basis of which quintile of performance hospital 1

was classified in for each complication and major CHADx+ class.

3.4 Stability analysis

In Section 2.4.1, we discussed the importance of ensuring performance

metrics are representative of hospitals’ usual performance, rather than

being prone to mean reversion. We have taken several precautions in

our analysis to ensure this is the case.

However, All complications should count also recommends that

hospital performance is reported on regularly and granularly. This

raises the more general question of which indicators are sufficiently

stable to be useful measures of hospitals’ performances, and under

what circumstances.

There are four factors that affect the stability of a performance metric.

Fundamentally, performance metrics are more stable when random

chance plays a smaller role in determining its incidence, and when the

underlying event is more common.76 Metrics are also more stable when

they’re measured across bigger institutions, or over longer periods of

time. Whether a metric is stable enough depends on the level of detail

and reliability required of the estimate.

For the purpose of exploring these relationships, we investigate

whether particular performance metrics are stable enough to reliably

identify a hospital’s decile of performance.77 To do this, we first

calculate the average amount that a hospital’s metric varies across

consecutive periods, and then scale it by the average width of that

metric’s deciles:

StabilityM =
1

H(T − 1)

H
∑︁

h=1

(︃

T
∑︁

t=2

(Mh,t −Mh,t−1)

)︃

Average decile widthM =
1

9

100
∑︁

d=10

(QM,d −QM,d−1)

Scaled stabilityM =
StabilityM

Average decile widthM

Where:

M is any given metric, which takes the value Mh,t for hospital h in

period t;

QM,d refers to the dth quantile of metric M

h is any of the H hospitals

t is any of the T time periods

d refers to any number in the series: 10, 20, . . . , 80, 90, 100.

76. That is, stability increases alongside a metric’s coefficient of dispersion.

77. This is an arbitrary threshold and could readily be tailored to a particular policy

objective.

Grattan Institute 2018 54



All complications should count: Using our data to make hospitals safer (Methodological supplement)

We identify the minimum sample size for which scaled stabilityM ≤ 1
by splitting our data into seven categories by hospital size, estimating

scaled stabilityM for each of these subsamples and fitting a line with

the following functional form fit to these seven data points:78

Scaled stabilityM = b * ln (hospital size) + c

This simple model specification explains about on average roughly

80 per cent of variation in the scaled stability of each of the indicators

assessed.79 We infer the minimum hospital size for which we can

expect a metric’s stability to be less than or equal to with the width of

a decile as follows:

(Hospital size | Scaled stabilityM = 1) = exp

(︂

1− ĉ

b̂

)︂

Where b and c are the parameters of the model, and are estimated

from the data to take the values b̂ and ĉ.

We find that overall complication rates are actually quite stable within

hospitals. For example, a single performance decile spans a four per

cent range of complication rates, on average, and complication rates

at hospitals with at least 600 admissions a year tend to vary across

years by less than this amount.80 This implies that, when hospitals are

compared on the basis of their overall complication rates, it’s likely that

78. Fewer than seven data points were used in some cases to make the fitted lines

less sensitive to outliers.

79. Assessing three variables (CHADx+, MCHADx5, HACs) across four time periods

(monthly, quarterly, six-monthly, annually), we estimated this relationship across 12

subsamples.

80. Of course, extreme deciles are wider and moderate performance deciles are

narrower than this average range.

Figure 3.14: Some indicators are much more stable than others

Minimum hospital size required to be able to reliably identify the decile of a

hospital’s performance

0

1,000

2,000

3,000

4,000

5,000

Monthly Quarterly Six-monthly Annual

Cardiology 
complications 
(MCHADx5)

>

HACs

CHADx+

Notes: We consider an indicator to be able to reliably identify the decile of a hospital’s

performance over a particular sample if the average change in hospitals’ rates between

periods is less than the average range of a performance decile.

Source: Grattan analysis of the 2012-15 National Hospital Morbidity Dataset.
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they’ll be ranked in the same performance decile in each consecutive

year – even if they are a relatively small hospital.81

Figure 3.14 illustrates how this stability changes when performance

is measured over a shorter period, or when only a particular group of

complications are considered. As expected, performance metrics are

less stable when measured over shorter periods of time. Still, rates of

all types of complication looked at here are stable enough to identify a

hospital’s precise decile of performance for hospitals with 3000 or more

admissions per year.

Importantly, we also observe that HACs and cardiology complications

are substantially less stable measures than the incidence of compli-

cations overall. This is in line with our expectations: affecting approxi-

mately 2 per cent of admissions, these subsets of complication affect

only a fifth of patients that experience any complication. Consequently,

their incidence will be more volatile.

Figure 3.14 usefully clarifies two characteristics of this relationship.

Firstly, which outcome is measured has a greater impact on the stability

of the outcome metric than the length of time over which it is measured.

Secondly, the prevalence of a particular event affects – but does not

determine – a metric’s stability. We note that HACs and cardiology

complications are equally prevalent, yet hospitals’ rates of cardiology

complications are more stable.82

In total, this analysis provides useful assurance that there is enough

information amongst the noise to distinguish hospitals’ performances

with reasonable precision, even over short time periods or using

81. More precisely, they’re likely to be within a decile of their previous position, which

includes the scenario where a hospital moves from the upper bounds of one decile

to the lower bounds of the above decile.

82. This does not imply one measure is necessarily superior, just that the stability of

particular metrics cannot be inferred from their prevalence.

relatively rare events.83 While the stability of metrics is not self-evident,

it is readily assessable – especially relative to decision criteria. Like

analysis should be repeated to determine whether particular metrics

are stable enough for a given policy objective, for the hospital size and

measurement window of interest.

83. We emphasise that this analysis uses raw prevalence rates. Extending this

analysis to risk adjusted complication rates would be a worthwhile endeavour.
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4 Additional details regarding proof-of-concept app

In All complications should count we refer to an app that Grattan

Institute has developed as a proof-of-concept. The app presents the

average complication rates for elective surgical procedures by age, sex,

specialty and the length of the patient’s stay, using admissions data

from 2012 to 2015. Results produced by the app should be taken as

indicative only.

No personal information is disclosed by this app. Only subgroups with

more than 20 admissions in each of the years were used, only counts

and averages are used for each subgroup, and the original data was

perturbed before the tables were prepared and uploaded.

Grattan Institute recognizes the significant foundational work under-

taken by the Health System Planning and Investment Branch, NSW

Ministry of Health, which has informed the development of this work.
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